Project Icon

cleanrl

一个深度强化学习库

CleanRL是一款简洁高效的深度强化学习库,提供单文件实现和广泛的算法支持,包括PPO、DQN等。它支持本地和云端实验、Tensorboard日志记录及Weights and Biases管理,适用于研究与快速原型开发。

DQN-Atari-Agents - 丰富DQN算法库,实现模块化训练与高效并行
AtariDDQNDQNGithubPythonRainbow开源项目
该项目提供了多种DQN算法的模块化训练方法,支持从原始像素或内存数据进行训练,并提高了训练速度。可选版本包括DDQN、Dueling DDQN等,可以通过组合Noisy layer、PER、多步目标等扩展为Rainbow算法。项目详细介绍了各类算法的使用方法及其在Atari和CartPole环境中的性能表现,适合用于研究和项目应用。
cleanlab - 开源工具自动检测和优化机器学习数据集
Githubcleanlab开源项目数据中心AI数据清理机器学习标签错误检测
cleanlab是一款开源的数据中心AI工具包,能够自动检测机器学习数据集中的标签错误、异常值和重复项等问题。该工具适用于图像、文本和表格等各类数据,并支持所有机器学习模型。除了发现数据问题,cleanlab还可以训练更稳健的模型,评估数据质量。基于可靠的理论基础,cleanlab运行高效,操作简便,是优化数据质量和提升模型性能的实用工具。
ReinforcementLearning.jl - 高性能Julia强化学习框架
GithubJuliaReinforcementLearning.jl开源项目强化学习机器学习
ReinforcementLearning.jl是Julia语言开发的强化学习框架,提供精心设计的组件和接口。研究人员可轻松实现新算法、进行基准测试和算法比较。框架支持从传统表格方法到深度强化学习,注重实验可重复性。其核心设计原则包括可重用性、可扩展性和易用性,适合各类强化学习实验和研究。
skrl - 开源模块化强化学习库
GithubJAXPyTorchSKRL开源项目强化学习环境接口
skrl是基于PyTorch和JAX的开源模块化强化学习库。支持OpenAI Gym、Farama Gymnasium等多种环境接口,并兼容NVIDIA Isaac系列环境。该库注重模块化设计、代码可读性和实现透明度,允许同时训练多个智能体,可在单次运行中共享或独立资源。skrl为强化学习研究和开发提供了灵活高效的工具。
PufferLib - 复杂游戏环境强化学习的简化工具
GithubPufferLibPyTorch开源项目强化学习环境包装
PufferLib是一个包装层工具,旨在简化复杂游戏环境中的强化学习开发。它支持原生PyTorch网络和简短的环境绑定,自动处理大部分复杂操作。该工具提供优化的LSTM支持、性能指标、本地仪表板、异步环境采样和检查点等功能,为强化学习研究提供全面解决方案。
Reinforcement-Learning - 将深度强化学习与神经网络使用Python和PyTorch实现结合的课程
GithubPyTorchPythonQ学习开源项目深度强化学习神经网络
本课程深入分析了神经网络与强化学习的结合,提供了Python和PyTorch实用实现。掌握Q学习、深度Q学习、PPO和演员批评算法,通过在OpenAI Gym的RoboSchool和Atari游戏中实际应用,熟悉深度强化学习的关键技术和应用场景。
hands-on-rl - 实践驱动的强化学习进阶教程
GithubPython开源项目强化学习机器学习深度学习课程
hands-on-rl项目提供一套系统化的强化学习实践教程。该教程涵盖从Q-learning到策略梯度等核心算法,通过递进难度的案例帮助学习者掌握RL技术。内容包括出租车驾驶和登月模拟等实例,并结合深度学习知识。教程提供Python代码实现和详细解释,适合希望深入学习强化学习的研究者和开发者。
TextRL - 通过强化学习提高文本生成质量,广泛支持多种模型
GithubHugging Face's TransformersOpenAI GYMTextRL开源项目强化学习文本生成
TextRL是一个Python库,结合Hugging Face的Transformers、PFRL和OpenAI GYM,通过强化学习优化文本生成。该库支持多种文本生成模型,如GPT-2、FLAN-T5和Bigscience/BLOOM,并具备高度的可定制性,适用于各种应用场景,从而提升文本生成的准确性和表现力。
Safe-Policy-Optimization - 安全强化学习的全面算法基准平台
GithubPKU-AlignmentSafe-Policy-OptimizationSafety-Gymnasium安全强化学习开源项目算法基准
Safe-Policy-Optimization为安全强化学习(Safe RL)提供了全面的算法基准平台。该项目整合了多种算法和环境,支持单智能体和多智能体任务,具备正确性、可扩展性、日志记录和可视化等特性。通过统一的接口和详细文档,Safe-Policy-Optimization简化了安全RL算法的评估和比较流程,为研究人员提供了强大的实验工具。
FinRL_Podracer - 高效轻量的强化学习量化交易框架
GithubPodracer开源项目强化学习算法策略量化交易金融科技
FinRL_Podracer是基于ElegantRL和FinRL构建的中级强化学习量化交易框架。该框架为开发者和专业人士提供轻量级、高效和稳定的算法交易策略开发解决方案。FinRL_Podracer支持DDPG、TD3、SAC等多种深度强化学习算法,适用于连续和离散动作空间。框架采用Pythonic设计原则,注重研究人员和算法交易者需求,支持灵活的代码迭代和精细控制。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号