Project Icon

cleanrl

一个深度强化学习库

CleanRL是一款简洁高效的深度强化学习库,提供单文件实现和广泛的算法支持,包括PPO、DQN等。它支持本地和云端实验、Tensorboard日志记录及Weights and Biases管理,适用于研究与快速原型开发。

stable-baselines3 - 增强型PyTorch强化学习算法,实现可靠性与自定义支持
GithubPyTorchRL算法Stable Baselines3开源项目强化学习稳定基线
实现可靠的PyTorch强化学习算法,方便研究和工业用户复制和优化新思路。支持自定义环境与策略,提供统一接口,适合项目开发和性能对比。涵盖A2C、PPO、DQN等算法,包含迁移指南和在线文档,适用于有强化学习基础的用户。
rl4co - 统一框架助力组合优化问题的强化学习解决方案
GithubPyTorchRL4CO开源框架开源项目强化学习组合优化
RL4CO是一个专注于组合优化问题的开源强化学习框架。基于PyTorch构建,它整合了TorchRL和TensorDict等技术,提供统一接口和灵活实现。框架支持构造型和改进型策略,适配多种环境和模型。其模块化设计和丰富工具集有助于研究人员高效开发和评估新算法,为组合优化研究提供了全面的实验平台。
deep-rl-class - Hugging Face深度强化学习课程资源与教程
GithubHugging FaceReinforcement Learning人工智能开源项目深度强化学习课程
本页面提供Hugging Face深度强化学习课程的全部资源,包括mdx文件和教程笔记。学习者可获取课程大纲、注册信息及详细介绍,适合研究AI和机器学习的人员深入了解深度强化学习的核心概念和应用技术。
Safe-Reinforcement-Learning-Baselines - 综合安全强化学习研究资源库
GithubSafe Reinforcement Learning基准测试安全强化学习开源项目环境算法
Safe-Reinforcement-Learning-Baselines项目汇集了安全强化学习领域的多种基线算法和基准环境,涵盖单智能体和多智能体场景。该资源库提供环境支持、算法实现、相关调查、学术论文和教程等全面内容,为研究人员提供系统性的安全强化学习工具和参考资料,促进该领域的持续发展和创新。
trlx - 分布式微调大型语言模型的强化学习框架,支持奖励函数与高效并行
GithubHugging FaceILQLNVIDIA NeMoPPOtrlX开源项目
一个专注于强化学习微调大型语言模型的分布式训练框架。支持使用奖励函数或已标注数据集进行训练,兼容🤗Hugging Face和NVIDIA NeMo模型,可扩展到20B参数以上。实现了PPO和ILQL等多种RL算法,提供详细文档和丰富示例,支持分布式训练和超参数搜索。适用于各种应用场景,通过高效并行技术提升训练效率。
Deep_reinforcement_learning_Course - 掌握Stable Baselines3、RL Baselines3 Zoo、Sample Factory和CleanRL等库的使用的深度强化学习课程
AI训练Deep Reinforcement LearningGithubHugging FaceRL库开源项目训练代理
免费深度强化学习课程,结合理论与实践,掌握Stable Baselines3、RL Baselines3 Zoo、Sample Factory和CleanRL等库的使用。训练智能体在SnowballFight、Huggy the Doggo、MineRL(Minecraft)、VizDoom(Doom)及经典环境(如Space Invaders、PyBullet)中运行。发布和下载社区智能体,并参与挑战与其他团队及AI对抗。
rl-plotter - 绘制强化学习训练曲线的工具
Githubrl-plotter学习曲线开源项目强化学习数据可视化日志记录器
rl-plotter 是一个简单的工具,可以轻松绘制强化学习训练曲线。支持自定义记录器、多实验绘图和多种绘图样式,兼容 OpenAI-baseline 和 OpenAI-spinningup。用户可以通过命令行方式绘制结果,并对图表进行个性化设置,如平均分组和阴影标准偏差。适用于研究人员和开发者追踪和可视化强化学习训练过程,提升工作效率和结果质量。
rllte - 强化学习研究和应用的长期演进项目
GithubRLLTE工具包开源项目强化学习生态系统算法实现
RLLTE项目受到电信长期演进标准的启发,旨在为强化学习研究与应用提供开发组件和标准。项目不仅提供高质量的算法实现,还作为开发算法的实用工具包。RLLTE支持模块化设计、优化硬件加速、兼容多种计算设备和自定义环境,且包含大量可重复使用的基准。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
envpool - 高性能并行强化学习环境执行引擎
EnvPoolGithub并行处理开源项目强化学习环境仿真高性能计算
EnvPool是一款基于C++的高性能并行强化学习环境引擎。它支持Atari、Mujoco等多种环境,提供同步和异步执行模式,适用于单玩家和多玩家场景。EnvPool易于集成新环境,在高端硬件上可达到每秒100万Atari帧或300万Mujoco步骤的模拟速度,比传统Python子进程方法快约20倍。作为通用解决方案,EnvPool可显著加速各类强化学习环境的并行化执行。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号