Project Icon

dtaidistance

快速时间序列距离计算库

dtaidistance是一个高效的时间序列距离计算Python库。它提供纯Python和优化的C实现,支持动态时间规整(DTW)等算法。该库与NumPy和Pandas兼容,避免了不必要的数据复制。支持多维时间序列、子序列搜索和聚类。dtaidistance为时间序列分析和机器学习提供了快速的距离计算工具,是处理时序数据的理想选择。

dtw-python - 实现动态时间规整算法的Python包
DTWGithubPython包动态时间规整开源项目时间序列分析模式识别
dtw-python是一个实现动态时间规整(DTW)算法的Python包。它支持任意局部和全局约束、快速本地代码执行、多种绘图样式等功能。该包提供计算对齐、绘制对齐和规整函数、表示步骤模式等方法,适用于经济计量学、化学计量学和时间序列挖掘中的分类和聚类任务。它是R语言DTW包的Python等效实现,采用GPL开源许可证发布。最新版本为X.X.X,详细文档可参考项目官网 https://dynamictimewarping.github.io。
textdistance - Python文本距离和相似度计算库
GithubPython库TextDistance字符串比较开源项目相似度计算算法
TextDistance是一个计算序列距离和相似度的Python库。它实现了30多种算法,包括编辑距离、基于令牌、基于序列、基于压缩和语音等类型。该库支持纯Python实现,可比较多个序列,并提供NumPy加速选项。TextDistance接口简单灵活,适用于各种文本分析和字符串比较任务。
editdistance - 快速计算编辑距离的Python开源库
GithubLevenshtein距离Python库editdistance字符串比较开源项目编辑距离
editdistance是一个开源的Python库,专门用于快速计算Levenshtein距离(编辑距离)。基于C++和Cython实现,采用Heikki Hyyrö提出的位并行算法,性能优异。该库不仅支持字符串,还可处理任何可哈希对象序列,具有广泛适用性。与同类库相比,editdistance在计算速度上表现突出,同时保持了使用简便性。支持跨平台安装,API设计清晰,便于集成到各类Python项目中。
dtwclust - R语言时间序列聚类工具包 支持多种算法和距离度量
DTWGithubR语言包动态时间规整开源项目时间序列聚类聚类算法
dtwclust是一个用于时间序列聚类的R语言包,实现了多种聚类算法,包括传统方法和新型的k-Shape、TADPole等。该包支持分区、层次和模糊聚类,提供DTW、GAK、软DTW等距离度量,并针对DTW进行了优化。它还包含聚类有效性指数、多变量支持和并行计算功能。dtwclust设计灵活,允许用户自定义距离度量和质心计算方法,适用于各类时间序列聚类任务。
pytimetk - 快速高效的Python时间序列分析库
GithubPython库pytimetk可视化开源项目数据处理时间序列分析
pytimetk是一个高效的Python时间序列分析库,通过简洁语法和优化计算简化了时间序列操作和可视化。相比pandas,它提供3-3500倍的速度提升,并减少代码复杂度。主要功能包括快速时间聚合、便捷绘图、日历特征提取和异常检测等。pytimetk适用于商业预测和科学研究,为时间序列分析提供了全面的解决方案。
deeptime - Python时间序列分析与动态建模库
Githubdeeptime动力学模型开源库开源项目时间序列分析机器学习
deeptime是一个专注于时间序列数据分析的Python库,集成了多种动态模型估计工具。该库涵盖传统线性学习方法(如马尔可夫状态模型、隐马尔可夫模型和Koopman模型)及先进的核方法和深度学习技术。与scikit-learn兼容的同时,deeptime还提供了独特的Model类,用于分析热力学、动力学和其他动态特性。该库支持多平台安装,适用于各类时间序列数据研究。
darts - Python中易于使用的时间序列预测与异常检测库
DartsGithub开源项目异常检测时间序列概率预测深度学习
Darts是一个用户友好且灵活的Python库,专注于时间序列的预测与异常检测。它提供了一系列从ARIMA到深度神经网络的多样化模型,通过统一的fit()和predict()接口简化操作,类似于scikit-learn。此外,Darts支持包括多变量和外部数据在内的复杂时间序列处理,并为大规模数据集提供高效解决方案。它还拥有全面的异常检测功能,允许进行深入的异常分析和评分。
pandas-ta - Python金融技术分析库 提供130多种指标和实用工具
GithubPandas TAPython开源项目技术分析指标库数据处理
Pandas TA是一个基于Python的金融技术分析库,集成了130多种技术指标和60多种TA-Lib蜡烛图模式。该库提供常用指标如移动平均线、MACD、布林带等,并支持多进程计算以提高效率。它还包含示例代码,展示如何创建自定义策略。Pandas TA充分利用了Pandas库的优势,为金融数据分析提供了丰富的工具和灵活的功能。
sktime - 多功能时间序列分析和预测库
GithubPython库sktime开源项目时间序列分析机器学习统一接口
sktime是一个开源的Python时间序列分析库,为多种时间序列学习任务提供统一接口。它支持时间序列分类、回归、聚类、标注和预测等功能,并提供专门的时间序列算法和兼容scikit-learn的工具。sktime还整合了多个相关库的接口,便于用户在不同时间序列任务间迁移算法。
ta-lib-python - 高效金融技术分析库 支持多种指标与图表识别
GithubPythonTA-Lib开源项目技术分析指标金融市场
TA-Lib Python是一个基于Cython的金融技术分析库,提供150多种市场技术指标和蜡烛图模式识别。性能优于原始SWIG接口,支持NumPy、Pandas和Polars等数据处理库。该库为金融分析软件开发者提供多种技术分析工具,可用于处理市场数据,计算移动平均线、MACD、RSI、布林带等指标。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号