Project Icon

awesome-semi-supervised-learning

半监督学习资源汇总,减少标注成本,提升分类效果

全面整理的半监督学习资源列表,包括最新研究、代码库和各种应用。半监督学习通过结合大量无标签数据和少量有标签数据,减少标注成本并提升模型准确度。资源涵盖计算机视觉、自然语言处理、生成模型、图基方法等多个领域,适用于深度学习框架。提供详细的文献综述、代码实现以及相关书籍和讲座链接,帮助用户了解和应用半监督学习技术。

Awesome-Super-Resolution - 全面收录超分辨率技术研究资源
GitHubGithub图像处理开源项目深度学习论文列表超分辨率
项目提供了丰富的超分辨率技术资源,包括按年份和主题分类的论文列表、数据集和代码仓库。内容涵盖2014年至2024年的研究成果,包括传统方法、深度学习方法、非深度学习方法以及超分辨率研讨会论文。资源库还收录了超分辨率调查报告,并设有快速导航功能,为研究人员和开发者提供便捷的资源检索体验。
awesome-agi-cocosci - 人工智能和计算认知科学研究资源大全
Github人工智能可解释性开源项目归纳推理计算认知科学认知科学
这个项目整理了人工智能和计算认知科学领域的重要学习资源,包括基础课程、教程、论文和专著。涵盖归纳推理、解释、概念表示、问题解决等多个研究方向,有助于推动高级机器智能发展和深化人类认知理解。项目内容全面,适合不同水平的研究人员参考使用。
Awesome-Multimodal-Large-Language-Models - 多模态大语言模型研究资源与最新进展汇总
Github多模态大语言模型开源项目指令微调模型评估视觉语言模型视频理解
该项目汇总了多模态大语言模型(MLLMs)领域的最新研究成果,包括论文、数据集和评估基准。涵盖多模态指令微调、幻觉、上下文学习等方向,提供相关代码和演示。项目还包含MLLM调查报告及MME、Video-MME等评估基准,为研究人员提供全面参考。
awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
awesome-llms-fine-tuning - 大语言模型微调资源指南,包括教程、工具与最佳实践
BERTGPTGithubLLMRoBERTafine-tuning开源项目
本页面汇总了微调大语言模型(如GPT、BERT、RoBERTa)的全面资源,适用于特定任务和领域的需求。包含教程、论文、工具、框架和最佳实践,为研究人员、数据科学家和机器学习从业者提供宝贵的指导,提升模型表现,优化工作流程。
awesome-multi-modal-reinforcement-learning - 多模态强化学习前沿论文与研究资源汇总
Github多模态强化学习开源项目表征学习视觉强化学习语言模型预训练
本项目收集了多模态强化学习(MMRL)领域的前沿研究论文和资源。内容涵盖视觉、语言及其结合的MMRL方法,包括ICLR、NeurIPS、ICML等顶级会议论文,以及预训练、表征学习、视觉推理等热点主题。项目持续追踪最新进展,为MMRL研究提供全面参考。
awesome-pretrained-models-for-information-retrieval - 信息检索领域预训练模型研究综述与最新进展
Github信息检索开源项目搜索引擎深度学习神经网络预训练模型
该项目汇集了信息检索领域预训练模型相关的重要论文资源。内容涵盖第一阶段检索、重排序、联合学习等核心技术,以及大语言模型应用和多模态检索等前沿主题。项目提供了全面的文献综述,有助于研究人员和从业者了解该领域的最新进展和发展方向。资源列表系统梳理了稀疏检索、密集检索等关键技术,为相关研究提供了宝贵的参考。
awesome-multimodal-in-medical-imaging - 医学影像多模态学习应用资源集锦
Github医学影像多模态学习开源项目报告生成视觉语言模型视觉问答
该项目汇集医学影像多模态学习应用资源,涵盖数据集、综述、报告生成、视觉问答和视觉语言模型等。内容包括大语言模型相关论文,并提供最新论文和代码链接。资源库定期更新,收录超过100篇高质量论文,为医学影像多模态研究提供重要参考。
awesome-colab-notebooks - 机器学习实验的精选Colab笔记合集
Colab notebooksGitHub仓库GithubML实验开源项目点击率特征集
该项目聚集了诸多适用于机器学习实验的Colab笔记,涵盖从音频生成到视频驱动的多种实用项目,如SpecVQGAN和LivePortrait。通过精选库和研究论文,这个资源为机器学习爱好者和研究人员提供了丰富内容,包括热门代码仓库和高引用的学术论文,便于用户快速进行实验和探索最新技术。
awesome-uncertainty-deeplearning - 深度学习不确定性估计资源汇总
Github不确定性开源项目深度学习神经网络贝叶斯方法集成学习
该项目汇集深度学习不确定性估计领域的论文、代码、书籍和博客。内容涵盖贝叶斯方法、集成方法、采样/dropout方法等技术,以及在分类、回归、异常检测等方面的应用。项目为研究人员和实践者提供全面参考,助力深入理解和应用深度学习中的不确定性估计。
相关项目
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号