Project Icon

lidar-camera-fusion

LiDAR点云与相机图像融合的ROS实现

这个ROS项目实现了Velodyne VLP16 LiDAR点云与RGB相机图像的融合。通过将点云转换为距离图像并应用双线性插值,提高了点云数据密度。项目包含安装指南、ROS主题说明,以及与FLOAM包结合的里程计测试。该技术在户外垃圾检测和深度估计等领域具有应用前景。

SegmentAnything3D - Segment Anything技术在3D场景中的创新应用
3D感知GithubSegment Anything 3D图像分割开源项目点云处理计算机视觉
SAM3D项目将Segment Anything技术扩展到3D感知领域,通过将2D图像分割信息转移到3D空间,为3D场景理解提供新思路。该项目结合SAM生成掩码、点云合并和区域合并等技术,实现2D到3D的有效转换。SAM3D不仅拓展了计算机视觉的应用范围,也为3D场景分析和理解开辟了新的研究方向。
Open3D-ML - Open3D 的扩展,用于处理 3D 机器学习任务
3D机器学习GithubOpen3D-MLPyTorchTensorFlow开源项目语义分割
Open3D-ML基于Open3D库,扩展了3D机器学习工具,支持语义点云分割和目标检测等应用。提供预训练模型和训练管道,兼容TensorFlow和PyTorch框架,易于集成到现有项目中。同时,提供数据可视化等通用功能,覆盖多种数据集和算法,提高3D数据处理效率和效果。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
slambook2 - 视觉SLAM理论与实践开源代码库
GithubSlambook2开源代码开源项目机器人技术视觉SLAM计算机视觉
slambook2是《视觉SLAM十四讲:从理论到实践》第二版的开源代码库,涵盖视觉SLAM理论基础和实践应用。项目提供丰富的代码示例,包括视觉里程计、后端优化、回环检测等核心模块的实现,帮助SLAM爱好者和研究人员深入理解核心概念和实现技术。代码库包含中英文版本,并提供相关学习资源链接,适合不同背景的用户学习和研究视觉SLAM技术。
flowmap - 基于梯度下降的相机姿态、内参和深度优化技术
FlowMapGithub光流开源项目深度学习相机姿态估计计算机视觉
FlowMap是一种创新的相机姿态、内参和深度估计技术,通过梯度下降优化获得高质量结果。该开源项目提供完整代码实现、预训练模型和评估数据集,支持多种数据集并提供丰富的实验配置。FlowMap在多个基准测试中表现出色,为计算机视觉和3D重建研究提供了有力支持。
multispectral-object-detection - 多光谱图像融合的高效目标检测方法
GithubTransformerYOLOv5多光谱目标检测开源项目计算机视觉跨模态融合
该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。
MonoGS - 基于3D高斯分布的实时场景重建与定位系统
3D重建CVPR 2024Gaussian Splatting SLAMGithub单目SLAM实时视觉定位开源项目
MonoGS是一个基于3D高斯分布的SLAM系统,支持单目、双目和RGB-D输入。该系统实现了实时稠密三维重建和精确相机定位,在室内场景中表现优异。通过高斯分布表示三维场景,MonoGS采用创新优化方法实现高效场景更新和渲染。作为CVPR 2024亮点论文,MonoGS展示了在计算机视觉和机器人领域的应用前景。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
3D-OVS - 无需标注的开放词汇3D场景分割新方法
3D分割CLIP特征GithubTensoRF开放词汇开源项目弱监督学习
3D-OVS是一种创新的弱监督3D开放词汇分割方法,仅依靠文本描述即可实现3D场景的精准分割。该技术融合TensoRF重建与CLIP特征提取,通过提示工程和DINO特征优化,提高了3D场景的语义理解能力。这一方法将3D视觉与自然语言处理有机结合,为多个领域的应用提供了新的可能性。
CF-3DGS - 免COLMAP的3D高斯散射场景重建技术
3D Gaussian SplattingGithub三维重建开源项目无监督学习神经渲染计算机视觉
CF-3DGS是一种新型3D场景重建技术,无需依赖COLMAP等传统SfM工具。该方法可直接从未标定图像序列学习3D高斯散射表示,通过迭代优化相机姿态和场景表示来实现高质量新视角合成。在Tanks and Temples等数据集上,CF-3DGS展现出优秀性能,为3D重建和新视角合成领域提供了高效灵活的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号