Project Icon

poutyne

简化PyTorch开发 加速神经网络训练

Poutyne是一个简化的PyTorch深度学习框架,能够处理神经网络训练中的大量样板代码。该框架提供简洁的模型训练接口、丰富的回调函数及自动检查点保存功能,显著提升开发效率。Poutyne兼容最新版PyTorch和Python 3.8+,适合需要快速构建和训练神经网络的研究人员及开发者。

SimpleTuner - AI模型训练优化脚本集 SimpleTuner
AI模型GithubSimpleTuner开源项目机器学习深度学习训练优化
SimpleTuner是一个开源的AI模型训练优化脚本集。它以简单易用为设计理念,支持多GPU训练、方面比例分桶等功能。适用于Flux、PixArt Sigma和Stable Diffusion等多种AI模型的训练。项目提供详细教程和快速入门指南,适合各级用户。作为开源平台,SimpleTuner鼓励学术交流和代码贡献。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
P-tuning-v2 - 深度提示调优技术提升小型模型性能 媲美传统微调方法
GithubP-tuning v2参数效率开源项目提示调优深度学习自然语言处理
P-tuning v2是一种创新的提示调优策略,通过深度提示调优技术为预训练Transformer的每层输入应用连续提示。这种方法显著提升了连续提示的容量,有效缩小了与传统微调方法的性能差距,尤其在小型模型和复杂任务中表现突出。研究表明,P-tuning v2在BERT和RoBERTa等模型上取得了优异成果,在多项NLP任务中达到了与微调相当的水平,为发展参数高效的模型调优技术开辟了新途径。
lightning-hydra-template - 支持多GPU和TPU等多种训练选项的深度学习模板
AI研究GithubHydraPyTorch Lightning开源项目深度学习配置管理
了解Lightning-Hydra-Template,这是一个兼具代码整洁和高性能的深度学习项目模板。它利用PyTorch Lightning和Hydra优化项目架构和实验管理,支持多GPU和TPU等多种训练选项,同时提供自动化测试和代码风格指导,帮助AI专业人员提升工作效率。此模板适用于快速试验和研发创新。
Pytorch-NLU - 轻量级NLP工具包 支持文本分类和序列标注
GithubPytorch-NLU序列标注开源项目文本分类自然语言处理预训练模型
Pytorch-NLU是一个轻量级自然语言处理工具包,专注于文本分类、序列标注和文本摘要任务。该工具包支持BERT、ERNIE等多种预训练模型,提供多种损失函数,具有依赖少、代码简洁、注释详细、配置灵活等特点。Pytorch-NLU包含丰富的数据集,使用方式简单,可快速应用于实际NLP项目中。
pytorch-tutorial - 为深度学习研究人员提供了学习 PyTorch 的教程代码
GithubPyTorch代码开源项目教程深度学习神经网络
突破传统学习障碍,探索PyTorch深度学习教程。通过精炼的代码,快速构建从基础到高级的模型如线性回归及神经网络等,同时详述安装指导与环境配置。
pyg-lib - 图形神经网络高性能计算库
CUDAGithubPyTorchPythonpyg-lib安装开源项目
pyg-lib是一款专为图形神经网络优化的高性能计算库。该项目为Linux、Windows和macOS等主流操作系统提供预构建的Python包,兼容多个PyTorch版本和CUDA组合,支持Python 3.8至3.12。pyg-lib通过提升图形神经网络的计算效率,为研究和开发提供了实用工具。研究人员和开发者可根据具体的系统环境,使用pip命令快速安装所需版本,轻松增强图形神经网络的性能。
pyp - Python命令行工具简化shell脚本编写
GithubPythonpyp命令行工具开源项目数据分析文本处理
pyp是一款Python命令行工具,能在shell环境中执行Python代码。它通过静态分析检测未定义变量并转换抽象语法树,实现自动导入模块、智能打印等功能。pyp可用简洁的Python代码替代常见shell工具,提高脚本编写效率。该工具还支持自定义配置和魔法变量,为用户提供灵活的shell处理体验。
lightning-thunder - PyTorch模型优化编译器 显著提升训练速度
GPU加速GithubPyTorch开源项目性能优化深度学习编译器
Lightning Thunder是一款专为PyTorch设计的源到源编译器。它通过整合nvFuser、torch.compile、cuDNN等多种硬件执行器,大幅提升PyTorch程序的执行效率。支持单GPU和多GPU环境,在Llama 2 7B模型训练中实现40%的吞吐量提升。Thunder具有易用性、可理解性和可扩展性,是PyTorch开发者提升模型性能的有力工具。
Py-Boost - Python实现的GPU加速梯度提升决策树库
GPU加速GithubONNX兼容Python库多输出训练开源项目梯度提升
Py-Boost是一个Python实现的GPU加速梯度提升决策树库。该项目提供简洁接口,支持GPU训练和推理,易于定制。特色功能包括SketchBoost算法高效处理多输出任务,以及ONNX格式支持。Py-Boost为研究和开发人员提供了探索梯度提升方法的灵活工具,同时保持了较高的运行效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号