Project Icon

PiSSA

高效微调大语言模型的创新方法

PiSSA是一种创新的参数高效微调方法,通过优化关键奇异值和向量来增强大语言模型性能。相较于LoRA,PiSSA展现出更快的收敛速度和更优的效果。在多个基准测试中,PiSSA的表现全面超越LoRA。这种方法不仅保留了LoRA的参数效率和量化兼容性优势,还大幅降低了4位量化误差。PiSSA初始化迅速,易于从LoRA转换。在多种模型和任务中,PiSSA均表现出色,为大语言模型的高效微调提供了新的可能性。

Meta-Llama-3.1-8B-bnb-4bit - Unsloth技术实现高效低资源的Llama 3.1模型微调
GithubHuggingfaceLlama 3.1Transformers大语言模型开源项目性能优化模型模型微调
该项目利用Unsloth技术对Meta-Llama-3.1-8B模型进行高效微调,节省58%内存并将训练速度提升2.4倍。提供多个免费Google Colab笔记本,支持Llama-3.1、Gemma-2、Mistral等模型的微调,便于获得性能优化的定制模型。适合资源受限的研究者和开发者使用,实现低成本高效率的大语言模型优化。
fsdp_qlora - 量化技术实现大型语言模型的高效训练
FSDPGithubLLMQLoRA开源项目微调量化
fsdp_qlora项目结合FSDP与量化LoRA,实现了在有限显存GPU上高效训练大型语言模型。支持HQQ和bitsandbytes的4位量化、LoRA、DoRA等多种策略,大幅降低内存占用。项目提供详细文档,便于快速上手使用。该方法使在消费级GPU上训练70B参数模型成为可能,为大模型研究提供了实用工具。
SiLLM - Apple Silicon大语言模型训练与推理工具包
Apple SiliconGithubMLXSiLLM低秩适应大型语言模型开源项目
SiLLM是专为Apple Silicon设计的大语言模型工具包,基于MLX框架优化LLM训练和运行流程。支持多种模型架构,提供Web应用和API服务,实现LoRA和DPO等先进训练技术。该项目还引入控制向量和特征消融等实验性功能,便于探索LLM内部机制,旨在让更广泛的Apple Silicon用户群体能够使用最新的LLM技术。
laser - 层选择低秩化技术提升语言模型推理能力
GithubLASERLayer-Selective Rank Reductiontransformer低秩近似大语言模型开源项目
LASER技术通过选择性替换LLM权重矩阵的低秩近似值,在无需额外训练的情况下显著提升问答任务性能。本项目提供了多个LLM和基准支持的代码,并通过示例展示如何运行实验。最新更新包括结果表和讨论页面,2024年1月将进行代码重构,以提高灵活性和易用性。
Llama-3.2-1B-Instruct-bnb-4bit - Unsloth技术加速大型语言模型微调
GithubHuggingfaceLlama 3.2TransformersUnsloth开源项目性能优化模型模型微调
本项目展示了利用Unsloth技术微调Llama 3.2等大型语言模型的方法。该技术可将微调速度提升2-5倍,同时降低70%内存占用。项目为Llama 3.2、Gemma 2和Mistral等多个模型提供免费Google Colab笔记本,便于用户进行模型微调。这一方法适合各层级用户,能有效提升模型训练效率。
LLM-Finetuning - 大型语言模型高效微调指南
GithubHugging FaceLoRAPEFT大型语言模型开源项目微调
了解如何使用LoRA和Hugging Face Transformers库高效微调大型语言模型。项目提供详细的教程笔记本,包括在Colab中微调Llama 2、GPT-Neo-X-20B、MPT-Instruct-30B等模型的指导和代码示例。无论新手或专家,均可找到实用资源,提升语言模型性能。欢迎贡献和提交问题,共同完善此开源项目。
Llama-3.2-1B-Instruct - Unsloth技术加速大型语言模型微调 提升效率降低资源消耗
GithubHuggingfaceLlama 3.2Unsloth内存优化多语言支持开源项目模型模型微调
Llama-3.2-1B-Instruct项目利用Unsloth技术优化大型语言模型微调过程。该方法可将微调速度提升2-5倍,同时减少70%内存占用。项目提供多个Google Colab笔记本,支持Llama 3.2、Gemma 2和Mistral等模型的高效微调。这一创新技术为AI语言模型开发提供了更高效的解决方案,有助于推动相关领域的进步。
Platypus - 高效经济的大语言模型微调开源项目
GithubLLMPlatypus开源开源项目微调模型合并
Platypus是一个开源项目,提供基于LLaMA和LLaMa-2架构的微调和融合模型。该项目使用LoRA和PEFT技术,实现高效的大语言模型微调。Platypus包含完整的训练流程,涵盖数据集精炼、模型微调和权重合并。在多项基准测试中,Platypus展现出优秀性能。这个项目为研究人员和开发者提供了优化定制语言模型的工具。
LLaMa2lang - 优化LLaMa3-8B模型性能,支持多语言微调和翻译
GPUGithubLLaMa3RAG开源项目翻译语言微调
LLaMa2lang提供便捷脚本,微调LLaMa3-8B模型以适应不同语言。结合RAG和翻译模型,将数据集OASST1翻译为目标语言,进行数据集成和细调,并支持推理。支持DPO和ORPO等优化方法,进一步提升模型回答质量,兼容多个基础模型与翻译架构。
Efficient-LLMs-Survey - 大语言模型效率优化技术综述
Github大语言模型开源项目模型压缩量化高效推理高效训练
本项目系统性地综述了大语言模型效率优化研究,包括模型压缩、高效预训练、微调和推理等方面。从模型、数据和框架三个维度对相关技术进行分类,全面梳理了该领域的最新进展,为研究人员和从业者提供了有价值的参考资料。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号