Project Icon

ED-Pose

革新端到端多人姿态估计框架

ED-Pose创新性地将多人姿态估计任务重新定义为两个显式框检测过程,无需后处理和密集热图监督。该框架在COCO数据集上超越同等骨干网络的热图方法1.2 AP,并在CrowdPose数据集上达到76.6 AP的领先水平。ED-Pose还兼容Human-Art数据集,并优化了推理速度。

PyMAF-X - 单图像全身3D人体重建新技术
3D人体重建GithubPyMAF-X人体姿态估计开源项目深度学习计算机视觉
PyMAF-X是一个开源的3D人体重建项目,利用金字塔网格对齐反馈循环技术,从单幅图像或视频中重建全身3D人体模型。该方法在COCO等数据集上表现优异,适用于计算机视觉和动作捕捉等领域。项目提供预训练模型,支持图像和视频输入,便于研究和应用。
FollowYourPose - 基于姿态和文本的自动视频生成技术
AAAI 2024AI生成Follow-Your-PoseGithub姿态控制开源项目文本生成视频
FollowYourPose项目提出了一种新方法,可以通过姿态和文本生成视频。该方法采用两阶段训练方案,利用易获取的数据集和预训练的文本到图像模型,生成可编辑且姿态可控的角色视频。第一阶段通过关键点图像对进行文本到图像的生成,第二阶段利用姿态自由视频数据集微调网络,成功生成连续的姿态可控角色视频,同时保留预训练模型的编辑和概念组合能力。
DyCo3D - 动态卷积实现鲁棒3D点云实例分割
3D点云实例分割DyCo3dGithub动态卷积开源项目深度学习计算机视觉
DyCo3D提出了一种新型3D点云实例分割方法,采用动态卷积技术处理实例尺度变化问题。该方法结合大范围上下文信息和轻量级Transformer,在ScanNetV2和S3DIS数据集上取得领先结果,推理速度提升25%以上。DyCo3D简化了传统bottom-up方法的复杂流程,对超参数不敏感,为3D点云实例分割领域提供了高效且鲁棒的新方案。
ICON - 利用法线预测实现穿衣人体的隐含表达,从RGB图像生成高细节的3D模型,包括衣服和人体网格
3D重建CVPR 2022GithubICON人体网格开源项目深度学习
ICON项目利用法线预测实现穿衣人体的隐含表达,从RGB图像生成高细节的3D模型,包括衣服和人体网格。项目支持多种基于PyTorch的模型,适合不同训练和评估需求。最新发布的ECON在此基础上进一步改进了功能。
DeepLabCut - 无标记动物姿态估计工具箱
DeepLabCutGithub动物姿态估计开源工具箱开源项目神经科学应用行为追踪
DeepLabCut是一个无标记动物姿态估计工具箱。此工具适用于各类动物行为的分析,并通过TensorFlow和PyTorch加强模型训练功能。它整合了多种新技术,如MobileNetV2s与EfficientNets,有效提升了效率与准确性。项目提供多语种文档与在线课程,方便用户快速掌握实时多动物追踪及三维姿态估计技术。DeepLabCut已应用于多种场合并获得验证,通过社区持续的优化适用于从神经科学到生态研究的广泛领域。
MonoHuman - 单目视频生成可动画化3D人体神经场景技术
3D渲染GithubMonoHuman人体神经场动画化人体单目视频开源项目
MonoHuman框架利用单目视频生成高质量、视角一致的3D人体动画。通过双向变形约束和关键帧信息建模变形场,实现任意新姿势的高保真渲染。该技术在ZJU-Mocap数据集和自然场景视频中表现优异,为虚拟现实和数字娱乐领域提供了有力支持。
MVHumanNet - 多视角日常穿着人体捕捉大规模数据集
GithubMVHumanNet人体捕捉多视角开源项目数据集计算机视觉
MVHumanNet是一个大规模多视角人体捕捉数据集,包含4,500个人物身份、9,000套日常服装和60,000个动作序列。数据集提供645百万帧图像,附带丰富标注,如人体遮罩、相机参数、2D/3D关键点、SMPL/SMPLX参数及相应文本描述。这一资源为计算机视觉和人体建模研究提供了重要支持,适用于多种应用场景。
easyportrait - 人像分割和面部解析大规模数据集
EasyPortraitGithub人像分割人工智能开源项目数据集面部解析
EasyPortrait是一个包含40,000张高质量标注RGB图像的数据集,用于人像分割和面部解析研究。数据集提供9个类别的标注,涵盖背景、人物、皮肤、眉毛、眼睛等。它可应用于视频会议背景移除、面部美化等多个场景。数据集基于用户ID划分训练、验证和测试集,并提供多个基线模型的预训练权重,为计算机视觉研究提供了有价值的资源。
PedSurvey - 行人检测技术综述,从手工特征到深度学习的演进
Github多光谱检测开源项目深度学习目标检测行人检测计算机视觉
PedSurvey项目提供了一个全面的行人检测研究综述,涵盖单光谱和多光谱检测方法。该项目详细介绍了行人检测的流程、手工特征和深度学习方法、多光谱检测技术、数据集和挑战。项目还展示了不同算法在各种数据集上的性能,并发布了新的大规模数据集TJU-DHD-Pedestrian。这为研究人员提供了行人检测领域的最新进展和未来研究方向的参考。
Depth-Anything-V2 - 单目深度估计新突破,高精度与快速推理并重
Depth Anything V2Github开源项目深度估计计算机视觉预训练模型
Depth-Anything-V2是单目深度估计领域的新进展。该模型在细节表现和鲁棒性上显著优于V1版本,并在推理速度、参数量和深度精度方面超越了基于SD的模型。项目提供四种预训练模型,适用于相对和度量深度估计,可处理图像和视频。此外,发布的DA-2K基准为深度估计研究设立了新标准。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号