Project Icon

sc_depth_pl

通过自我监督学习实现视频中的单目深度估计

SC-Depth项目提供了SC-DepthV1, V2和V3版本的PyTorch Lightning实现,专注于从视频中进行自我监督的单目深度估计。SC-DepthV1引入了几何一致性损失和自发现蒙板,提高了深度预测的准确性。SC-DepthV2通过引入自动矫正网络(ARN)解决了手持相机视频中大相对旋转的问题。SC-DepthV3利用外部预训练的深度估计网络,在动态场景中显著提升了单目深度估计的准确性。该项目提供了详细的安装指南、数据集组织和训练流程,支持多种数据集和自定义数据的训练。了解更多关于SC-Depth的详细信息以及其在多个挑战性数据集上的评估结果。

monodepth2 - 基于自监督学习的单目深度估计实现
GithubMonodepth2PyTorch开源项目深度估计自监督学习计算机视觉
本项目提供了PyTorch实现的代码,用于训练和测试深度估计模型。代码采用自监督学习方法,支持单目和立体图像的深度预测。提供多种预训练模型和自定义数据集,兼容不同的图像分辨率。适用于研究和非商业用途,包含详细的设置指南、训练和评估说明。用户可通过此项目高效开发和优化深度估计模型。
Depth-Anything-V2-Small - 先进高效的开源深度估计工具
Depth-Anything-V2GithubHuggingface图像处理开源项目机器学习模型深度估计计算机视觉
Depth-Anything-V2-Small是一个开源的单目深度估计模型,基于大规模合成和真实图像数据训练。相比前代产品,该模型提供更精细的深度细节和更强的鲁棒性。它比同类基于稳定扩散的模型运行速度快10倍,且更加轻量化。模型支持高效的图像深度推断,可用于各种计算机视觉应用场景。
UniDepth - 单目深度测量的通用算法,兼容多种数据集
CVPR 2024GithubHugging FacePython包UniDepth开源项目深度估计
UniDepth项目提出了通用的单目深度测量方法,支持多个数据集如NYUv2、KITTI和SUN-RGBD。通过训练模型,该方法可直接从RGB图像生成深度和内参预测,无需预先深度数据。其高精度、低延迟的推理能力在多个基准测试中表现优秀。支持多种输入形状和比例,适合机器人视觉和自动驾驶等应用。
Depth-Anything - 大规模无标注数据驱动的强大单目深度估计模型
Depth AnythingGithub人工智能图像处理开源项目深度估计计算机视觉
Depth Anything是一款基于大规模数据训练的单目深度估计模型。它利用150万标注图像和6200万无标注图像进行训练,提供小型、中型和大型三种预训练模型。该模型不仅支持相对深度和度量深度估计,还可用于ControlNet深度控制、场景理解和视频深度可视化等任务。在多个基准数据集上,Depth Anything的性能超越了此前最佳的MiDaS模型,展现出优异的鲁棒性和准确性。
Depth-Anything-V2 - 单目深度估计新突破,高精度与快速推理并重
Depth Anything V2Github开源项目深度估计计算机视觉预训练模型
Depth-Anything-V2是单目深度估计领域的新进展。该模型在细节表现和鲁棒性上显著优于V1版本,并在推理速度、参数量和深度精度方面超越了基于SD的模型。项目提供四种预训练模型,适用于相对和度量深度估计,可处理图像和视频。此外,发布的DA-2K基准为深度估计研究设立了新标准。
unidepth-v2-vitl14 - 单目度量深度估计模型 支持多样化场景
GithubHuggingfacePyTorchUniDepth开源项目机器学习模型模型深度估计计算机视觉
UniDepth-v2-vitl14是一个基于PyTorch的单目度量深度估计模型,采用ViT-L/14架构。该模型可从单张2D图像预测场景深度,支持Hugging Face模型中心集成。UniDepth-v2-vitl14适用于计算机视觉和3D感知领域的研究与开发。
Depth-Anything-V2-Large - 单目深度估计新突破:高精度细节与高效性能的完美平衡
Depth Anything V2GithubHuggingface图像处理开源项目模型深度估计神经网络计算机视觉
Depth-Anything-V2-Large是一款基于大规模数据训练的单目深度估计模型。该模型通过595K合成标记图像和62M+真实未标记图像的训练,在细节精度和鲁棒性方面超越了前代版本。与基于SD的模型相比,它不仅更加高效和轻量,处理速度提升了10倍,还在预训练基础上展现出优秀的微调能力。这一模型为计算机视觉领域提供了性能卓越的深度估计解决方案。
AdelaiDepth - 开源单目深度预测工具箱 推进3D场景重建研究
3D场景重建AdelaiDepthGithub单目深度预测开源项目深度学习计算机视觉
AdelaiDepth是开源单目深度预测工具箱,整合3D场景形状重建等多种算法。项目聚焦单一图像深度学习和3D场景恢复,相关成果入围CVPR'21最佳论文。通过提供训练代码和数据集,AdelaiDepth为计算机视觉领域研究提供了重要资源。
Depth-Anything-V2-Small-hf - 单目深度估计新标杆 精细、稳健且高效
Depth Anything V2GithubHuggingface人工智能图像处理开源项目模型深度估计计算机视觉
Depth-Anything-V2-Small-hf是一款基于DPT架构和DINOv2主干的先进单目深度估计模型。经过大规模合成和真实图像训练,它在细节精度和稳健性上超越了前代产品。相比基于稳定扩散的模型,该模型速度提升10倍,且更为轻量。它在零样本深度估计任务中表现卓越,可广泛应用于3D重建和场景理解等领域。研究者和开发者可通过Transformers库便捷地集成和使用这一模型。
Depth-Anything-V2-Base - 更快更精细的单目深度估计模型
Depth-Anything-V2GithubHuggingface图像处理开源项目模型深度估计深度学习计算机视觉
Depth-Anything-V2是一款先进的单目深度估计模型,由595K合成标记图像和62M+真实未标记图像训练而成。它在细节表现、鲁棒性和效率上都超越了V1版本,处理速度比基于SD的模型快10倍。采用ViT-B架构,该模型为计算机视觉领域提供了高效的深度预测工具,尤其适用于需要精确深度信息的应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号