Project Icon

edgeyolo

优化边缘设备性能的模型,支持ONNX和TensorRT导出

EdgeYOLO为边缘设备优化,在Nvidia Jetson AGX Xavier上达34FPS,并通过RH loss提升小型和中型物体检测。支持COCO2017和VisDrone2019数据集,提供多种模型格式和部署代码,包括RKNN、MNN和TensorRT。项目定期更新,并集成了SAMLabeler Pro工具,支持多人远程标注。可快速上手和训练,适配不同设备和应用场景。

yolov5 - 视觉AI对象检测和图像分类技术
YOLOv5,一款由Ultralytics开源的视觉AI模型,支持对象检测、图像分割与分类。提供全面文档及社区支持,适合各级用户使用,并定期更新以集成最新技术。
yolov10n - YOLOv10n:实时对象检测的创新技术
COCO数据集GithubHuggingfacePyTorch模型YOLOv10实时物体检测开源项目模型计算机视觉
YOLOv10n项目展示了对象检测的实时进展,结合计算机视觉与对象识别算法。其基于PyTorch的实现并支持COCO数据集用于训练与推理,保证了性能和应用的广泛性。简单的安装和模块调用,提供了快速的目标物体检测及识别功能,支持优化模型上传至相关平台,提升模型精度与效率。
DAMO-YOLO - 基于YOLO系列和嵌入包括神经网络架构搜索及轻量级算法在内的多项新技术的对象检测算法
DAMO-YOLOGithub开源项目性能优化检测模型目标检测算法更新
DAMO-YOLO, 阿里巴巴DAMO实验室的先进对象检测技术,基于YOLO系列和嵌入包括神经网络架构搜索及轻量级算法在内的多项新技术,以优化性能和效率。针对广泛行业场景,提供一站式解决方案,从训练到部署全面支持。
tensorrtx - TensorRT深度学习网络实现库
GPU加速GithubTensorRTYOLO系列开源项目模型转换深度学习网络
TensorRTx项目使用TensorRT API实现主流深度学习网络。它提供灵活构建、调试和学习TensorRT引擎的方法,支持YOLO、ResNet、MobileNet等多种模型。兼容TensorRT 7.x和8.x版本,并包含详细教程和常见问题解答,方便用户快速入门。
YOLOv6 - 高性能目标检测框架支持多场景应用
GithubYOLOv6开源项目模型训练深度学习目标检测计算机视觉
YOLOv6是一款高效的目标检测框架,提供从轻量级到大型的多种模型选择。它在速度和精度上取得平衡,支持量化和移动端部署,适用于各种实时检测场景。最新版本还引入了分割功能,扩展了应用范围。YOLOv6不仅适用于工业领域,还可广泛应用于安防、交通等多个领域。
yolov7 - 实时目标检测算法实现性能新突破
GithubYOLOv7开源项目性能优化深度学习目标检测计算机视觉
YOLOv7是一款高效的实时目标检测算法,在MS COCO数据集上实现了51.4% AP的性能。该项目提供多种模型变体,包括YOLOv7-X和YOLOv7-W6等,适用于不同应用场景。此外,YOLOv7还具备姿态估计和实例分割功能,支持多GPU训练、迁移学习和模型导出,是一个全面的目标检测解决方案。
jetson-inference - 深度学习部署与实时视觉识别
GithubNVIDIA JetsonPyTorchTensorRT实时视觉开源项目深度学习
NVIDIA Jetson设备上的深度学习推理和实时视觉处理库。使用TensorRT优化GPU网络运行,支持C++和Python, 以及PyTorch模型训练。功能包括图像分类、物体检测、语义分割等,适用于多种应用场景,如实时摄像头流和WebRTC网络应用。
YOLOv5-Lite - 轻量级高性能目标检测模型的优化与部署
GithubYOLOv5-Liteablation实验开源项目性能优化模型比较部署
YOLOv5-Lite通过优化YOLOv5模型实现了轻量化、加速推理和简化部署。通过消融实验减少了Flops、内存占用和参数,并采用Shuffle Channel和YOLOv5 Head降低Channels。在Raspberry Pi 4B上输入320×320帧能达到至少10+ FPS。该项目提供各种测试模型和对比结果,展示在多种硬件平台上的性能,并包含详细的教程和下载链接。
yoloair - YOLOAir2024版:综合模型改进教程与源码库
GithubPyTorchUltralyticsProYOLOAirYOLOv5YOLOv8开源项目
YOLOAir2024版发布,提供多模型支持及改进教程,包括YOLOv5、YOLOv7、YOLOv8等。通过统一框架和模块化实现模型多样化应用,如目标检测、实例分割、图像分类等,适用于科研与实际应用。免费提供源代码。
rtdetr_r50vd - 全新RT-DETR模型提升精度与速度的实时物体检测方案
GithubHuggingfaceRT-DETRYOLO变压器实时应用开源项目模型目标检测
RT-DETR是面向实时物体检测的创新模型,通过混合编码器和最小化不确定性查询选择,实现高精度和快速检测。模型在COCO和Objects365数据集训练,支持速度调整以适应多种场景。RT-DETR-R50/R101在COCO上分别取得53.1%和54.3%的平均精度,在T4 GPU上达到108和74 FPS,性能超过YOLO模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号