Project Icon

Vehicle-Detection

深度学习与YOLO算法实现的车辆检测系统

Vehicle-Detection项目结合深度学习和YOLO算法实现车辆检测。项目提供完整工作流程,涵盖数据集准备、模型训练和测试。采用YOLOv5预训练模型微调,集成wandb工具监控性能。项目包含自定义车辆数据集,并提供详细的安装、训练和测试指南。

yolov8s-table-extraction - 基于YoloV8的表格检测与提取模型
GithubHuggingfacePyTorchYOLOv8开源项目模型深度学习目标检测表格提取
该项目利用YoloV8技术为表格检测与提取提供了解决方案,适用于有边框及无边框的表格。通过ultralyticsplus库支持,模型安装与操作便捷,精度高达0.98376。项目包含使用指南及多种模型选择,适用于快速而可靠的表格数据提取,是数据分析和管理的理想工具。
yolort - 简易高效的YOLOv5目标检测工具
GithubONNXTensorRTYOLOv5yolort对象检测开源项目
yolort项目致力于简化和优化YOLOv5的训练与推理。采用动态形状机制,结合预处理和后处理,支持LibTorch、ONNX Runtime、TVM、TensorRT等多种后端的轻松部署。项目遵循简洁设计理念,安装与使用便捷,支持通过PyPI和源码安装。提供丰富的推理接口示例和详细文档,使目标检测更为轻松,适用于广泛的应用场景。
awesome-radar-perception - 自动驾驶雷达感知技术资源库 数据集算法全覆盖
Github传感器融合信号处理开源项目目标检测自动驾驶雷达数据集
这个开源项目汇集了自动驾驶雷达感知领域的综合资源,包括各类雷达数据集、信号处理工具、检测跟踪算法和融合方法。项目还归纳了雷达感知的关键挑战,如天气影响和多径效应等。通过持续更新,该资源库旨在促进雷达感知技术在自动驾驶领域的进步。
Det3D - 提供多数据集和算法支持的3D目标检测工具箱
3D对象检测Det3DGithubKITTIPointPillarsPyTorch开源项目
Det3D是一款基于PyTorch的3D目标检测工具箱,支持多个数据集如KITTI、nuScenes、Lyft,并实现了多种3D目标检测算法如PointPillars、SECOND、PIXOR等。其特点包括高性能、支持分布式训练和同步批归一化,以及灵活的模型配置和可视化工具。Det3D适合自动驾驶、机器人和增强现实等领域的研究人员和开发者。
donkeycar - 模块化且简洁的Python自驾库
DonkeycarGithubPythonRaspberry Pi开源项目深度学习自动驾驶
Donkeycar是一个模块化且简洁的Python自驾库,专为爱好者和学生设计,便于快速实验和社区贡献。它广泛应用于高中和大学的学习与研究,提供丰富的图形界面和模拟器功能,让用户在构建机器人前即可进行实验。适用于基于Raspberry Pi的自驾车构建,支持多种摄像头、GPS和深度学习模型,是参与线上和线下自驾车比赛的理想选择。
OpenPCDet - 开源LiDAR 3D目标检测框架 支持多种先进算法和数据集
3D目标检测GithubLiDAROpenPCDet开源项目深度学习点云
OpenPCDet是一个开源LiDAR 3D目标检测框架,支持PointRCNN、PV-RCNN等多种算法。具有简洁设计,兼容多种数据集和模型,在KITTI和Waymo等数据集上提供基准性能。支持分布式训练和多头检测,是功能丰富的3D检测工具箱。
DeepCamera - 提供面部识别侵入检测、跌倒检测和停车监控等多项功能,用先进AI技术升级传统监控摄像头和CCTV/NVR
DeepCamera利用先进AI技术升级传统监控摄像头和CCTV/NVR,提供面部识别侵入检测、跌倒检测和停车监控等多项功能。该项目开源并简化了边缘AI开发,便于用户快速部署AI应用,有效提高监控系统的性能和效率。
deformable-detr - 使用ResNet-50骨干网络实现的Deformable DETR目标检测模型
COCO 2017Deformable DETRGithubHuggingfaceHungarian算法卷积神经网络开源项目模型物体检测
Deformable DETR模型依托ResNet-50骨干网络,实现了高效的端到端目标检测。通过变形Transformer机制,它能够有效处理并识别图像中的复杂对象。此模型在COCO 2017数据集上经过充分训练,采用目标查询匹配和双重损失优化技术,显著提高了检测精度。适用于高效目标检测场景。
assets - 视觉资产和AI模型资源库
GithubUltralyticsYOLO开源项目数据集计算机视觉预训练模型
Ultralytics Assets 仓库集成了视觉资产、预训练模型和数据集,为 Ultralytics YOLO 生态系统提供支持。该仓库涵盖对象检测、实例分割、图像分类等计算机视觉任务,为研究人员和开发者提供便捷的资源访问,加速机器学习项目的开发和优化。此仓库提供了完整的资源套件,包括视觉素材、预训练模型和注释数据集,适用于多种计算机视觉任务。它简化了资源获取过程,使开发者能够专注于项目开发而非资源收集,从而提高工作效率。
JSON2YOLO - COCO到YOLO格式转换工具 提升目标检测效率
COCO2YOLOGithubUltralytics开源项目数据集转换机器学习目标检测
JSON2YOLO是一个开源数据集转换工具,专注于将COCO格式JSON数据转换为YOLO格式。这款跨平台工具支持Linux、MacOS和Windows,为机器学习实践者简化了数据处理流程。它不仅优化了数据转换过程,还能提升目标检测模型的训练效率。项目源码可在GitHub获取,用户也可加入Discord社区交流。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号