Project Icon

sn-gamestate

创新足球比赛状态重建技术实现运动员追踪与识别

SoccerNet Game State Reconstruction项目提出了一种新的计算机视觉任务,通过单个移动摄像头追踪和识别足球运动员,并构建小型地图。该项目引入了包含200个标注视频片段的数据集和新评估指标,提供了基于深度学习的基线系统和开源代码库。这一创新技术为体育行业提供了自动化比赛状态重建的工具,有望推动相关研究的进一步发展。

dreamscene4d - 从单目视频生成动态多目标3D场景的突破性技术
3D场景生成DreamScene4DGithub多目标跟踪开源项目视频处理计算机视觉
DreamScene4D是一种从单目视频生成动态多目标3D场景的开源技术。它采用3D高斯和形变优化方法,能处理不同长度的视频和多个目标。项目提供自动化和分阶段优化脚本,支持处理有遮挡和无遮挡的视频。DreamScene4D在复杂场景和长视频序列处理方面表现优异,为计算机视觉和图形学研究提供了新思路。
Segment-and-Track-Anything - 视频中任意对象的自动分割与追踪系统
AI视觉GithubSAM-Track交互式分割开源项目目标跟踪视频分割
Segment-and-Track-Anything是一个专注于视频中任意对象分割和追踪的开源项目。该系统集成了SAM模型的关键帧分割能力和DeAOT模型的多目标追踪功能。它支持自动检测新对象、交互式修改、文本提示等多种操作模式,适用于街景分析、增强现实、细胞追踪等领域。项目提供了直观的WebUI界面和灵活的参数设置,使用户能够轻松实现复杂的视频对象分割和追踪任务。
vggsfm - 深度学习驱动的结构运动恢复技术
GithubVGGSfM三维重建开源项目深度学习结构运动计算机视觉
VGGSfM是一种结合视觉几何原理和深度学习的结构运动恢复(SfM)技术。该开源项目提供Python包,支持3D重建、相机姿态估计和稠密深度图生成。VGGSfM在CVPR24 IMC挑战赛相机姿态估计中获得第一名。它支持多种特征点提取方法,并提供灵活的可视化选项,方便研究人员和开发者进行3D重建实验和应用开发。
BundleSDF - 神经网络实现未知物体6自由度跟踪和3D重建
3D重建6-DoF跟踪BundleSDFGithub姿态图优化开源项目神经对象场
BundleSDF是一种创新的计算机视觉方法,能够从单目RGBD视频序列中实现未知物体的6自由度跟踪和3D重建。该方法基于神经网络技术,适用于各种刚体物体,包括缺乏视觉纹理的情况。通过结合神经物体场和位姿图优化,BundleSDF能够将信息稳健地整合到一致的3D表示中,准确捕捉物体的几何形状和外观特征。这种方法能够有效处理大姿态变化、遮挡、无纹理表面和镜面高光等复杂场景。
MocapNET - 基于RGB图像的3D人体姿态实时估计
3D姿态估计GithubMocapNETRGB图像Tensorflow实时性能开源项目
MocapNET项目通过2D关节估计,将单目RGB图像转换为3D人体姿态,实现实时估计。它采用NSRM表示法、新的人体方位分类器和复合神经网络,能够在显著遮挡情况下精确恢复人体姿态。通过逆运动学解算器,MocapNET显著提升了人体姿态估计的准确性。最新的MocapNET v4版本用Python重写,支持3D凝视和BVH面部配置检索,并提供一键Google Collab部署和Blender 3D编辑器插件。项目不断更新,旨在提高其对社区的实用性和可访问性。
CenterSnap - 单镜头多物体3D重建与姿态估计技术
3D重建6D姿态估计CenterSnapGithub多物体检测开源项目计算机视觉
CenterSnap是一个开源的深度学习项目,致力于单镜头多物体3D重建和姿态估计。该技术能在单次拍摄中同时完成多个物体的3D形状重建、6D姿态和尺寸估计。项目提供了完整的训练和推理代码,以及预处理数据集,方便研究人员复现结果和开展进一步研究。CenterSnap在机器人抓取和场景理解等领域有潜在应用价值。
Total-Recon - 可变形场景重建技术实现沉浸式视角合成
3D重建GithubICCV 2023可变形场景重建开源项目视角合成计算机视觉
Total-Recon是一种可变形场景重建系统,能从RGBD传感器拍摄的长视频中重建场景几何、外观和物体运动。该系统支持从新视角渲染场景,包括第一人称和第三人称跟随视角,并提供3D视频滤镜功能。这项技术为沉浸式视角合成和增强现实应用提供了基础支持。
Grounded-SAM-2 - 多模态视频目标检测与分割框架
GithubGrounding DINOSAM 2图像分割开源项目目标检测视频追踪
Grounded-SAM-2是一个开源项目,结合Grounding DINO和SAM 2技术,实现图像和视频中的目标检测、分割和跟踪。该项目支持自定义视频输入和多种提示类型,适用于广泛的视觉任务。通过简化代码实现和提供详细文档,Grounded-SAM-2提高了易用性。项目展示了开放世界模型在处理复杂视觉任务中的潜力,为研究人员和开发者提供了强大的工具。
Gaussian-SLAM - 革新性实时3D重建技术,融合高斯散射实现逼真效果
3D重建Gaussian-SLAMGithubSLAM开源项目神经渲染计算机视觉
Gaussian-SLAM是一种创新的3D场景重建技术,将高斯散射与SLAM系统相结合。该技术能够准确映射环境,生成高质量纹理和细节,实现照片级真实的稠密重建效果。Gaussian-SLAM在Replica、TUM_RGBD、ScanNet等多个数据集上展示了优秀性能,为实时3D重建和增强现实应用开辟了新途径,是计算机视觉和机器人领域的重要进展。
Realtime_Multi-Person_Pose_Estimation - 实时多人人体姿态估计的开源实现
CVPRGithubMSCOCO Keypoints ChallengeOpenPosePart Affinity FieldsRealtime Multi-Person Pose Estimation开源项目
该项目展示了一种无需人体检测器的实时多人人体姿态估计方法,曾获2016年MSCOCO关键点挑战赛冠军等多个奖项。项目提供了C++、TensorFlow、Pytorch等多种实现版本,适用于不同应用场景。页面还包括详细的测试与训练步骤,以及相关的代码库和资源链接,适合研究人员和开发者使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号