Project Icon

sn-gamestate

创新足球比赛状态重建技术实现运动员追踪与识别

SoccerNet Game State Reconstruction项目提出了一种新的计算机视觉任务,通过单个移动摄像头追踪和识别足球运动员,并构建小型地图。该项目引入了包含200个标注视频片段的数据集和新评估指标,提供了基于深度学习的基线系统和开源代码库。这一创新技术为体育行业提供了自动化比赛状态重建的工具,有望推动相关研究的进一步发展。

mahalanobis_3d_multi_object_tracking - 在NuScenes Tracking Challenge中荣获冠军,提升了自主驾驶3D多目标追踪的准确率
AB3DMOTAutonomous DrivingGithubNuScenes Tracking ChallengeProbabilistic TrackingStanford University开源项目
该项目提出了一种在线3D多目标追踪方法,在NeurIPS 2019 AI Driving Olympics Workshop上荣获NuScenes Tracking Challenge冠军。与AB3DMOT方法相比,显著提高了较小目标如行人的追踪精度。项目提供了详尽的技术报告与源码,以及详细的运行步骤,便于他人复现结果。使用MEGVII的检测结果,该方法在多目标追踪准确率(AMOTA)上表现出色,特别是对行人和小型目标的追踪效果尤为明显。
VideoMamba - 突破性的视频理解状态空间模型
GithubVideoMamba多模态兼容性开源项目状态空间模型视频理解长期视频建模
VideoMamba是一种创新的视频理解模型,克服了现有技术的局限性。它能高效处理长视频和高分辨率内容,展现出可扩展性、短期动作识别敏感性、长期视频理解优势和多模态兼容性四大核心特点。VideoMamba为全面的视频理解任务提供了高效解决方案,推动了该领域的发展。
Be Your Best Portal - 创新足球训练平台提升视觉扫描和决策能力
AI工具Be Your Best决策能力扫描率视觉训练足球训练
Be Your Best为足球运动员提供创新的视觉扫描和决策能力训练。该平台通过定制化方案平均提高球员28%的扫描率,有效改善前场传球、控球和战术执行。配套应用程序提供数据分析、进度追踪和排行榜功能,助力技能提升。阿森纳的厄德高和谢菲尔德联的本·奥斯本等职业球员对其训练效果给予肯定。
Transformer_Tracking - 视觉追踪中Transformer应用的全面综述和前沿动态
GithubTransformer开源项目深度学习目标检测视觉跟踪计算机视觉
本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。
TF-SimpleHumanPose - 2D多人体姿态估计和追踪的简易基线方法
GithubMS COCOTensorFlow姿态估计开源项目简单基线跟踪
该项目是利用TensorFlow实现的2D多人体姿态估计与追踪代码库,兼容多个数据集如MPII、PoseTrack 2018和MS COCO 2017。其代码简洁灵活,提供训练、测试和可视化功能,并生成与MS COCO和PoseTrack兼容的输出文件。在CUDA和cuDNN环境的Ubuntu系统上进行多GPU训练和测试。
Veo - 智能体育录像与分析平台
AI分析AI工具Veo Cam 3实时直播视频编辑运动摄像
Veo平台集成AI智能摄像机和分析软件,为体育比赛提供自动录制、实时直播和深度分析。系统能自动跟踪场上动作,生成广播级画面,并提供即时回放和关键时刻标记。AI分析工具自动解析比赛数据,全面展示团队表现。平台还支持个性化学习内容,促进运动员发展。Veo旨在通过创新技术简化体育分析流程,提高效率。
acezero - 基于增量学习的图像集合场景重建与姿态估计方法
ACE0GithubPyTorch场景坐标重建开源项目深度估计相机注册
该项目提出了一种基于增量学习的场景坐标重建方法,结合了RANSAC和DSAC*算法,实现了高精度的图像姿态估计。ACE0提供了丰富的实验数据和可视化工具,支持部分重建和自监督重定位等高级用例。项目代码基于PyTorch实现,并已在Ubuntu 20.04和多种GPU环境下测试。
FoundationPose - 创新性6D物体姿态估计与跟踪的统一框架
6D物体姿态估计FoundationPoseGithub开源项目机器人应用物体跟踪计算机视觉
FoundationPose是一个统一的6D物体姿态估计和跟踪框架,支持基于模型和无模型两种方式。该框架无需微调即可应用于新物体,通过大规模合成训练、大型语言模型辅助和创新架构实现强大泛化能力。在多个公共数据集的评估中,FoundationPose在challenging场景下显著优于现有方法,即使减少假设也能达到与实例级方法相当的效果。
PoseFlow - 高效实时人体姿态追踪算法
GithubPoseFlow人体姿态跟踪多人姿态估计开源项目深度学习计算机视觉
PoseFlow是GitHub上的开源人体姿态追踪项目,在实时多人追踪方面表现出色。它在PoseTrack挑战赛中achieve了高精度,支持各种数据集和可视化。该算法结合了深度学习和计算机视觉技术,适用于动作识别、行为分析等AI应用。PoseFlow提供Python实现,易于集成到现有系统中。它集成了AlphaPose和DeepMatching/ORB特征匹配技术,实现了高效准确的追踪。该项目提供完整代码和使用文档,可应用于计算机视觉、动作分析等领域。
MonocularTotalCapture - 单目3D人体姿态全方位捕捉系统
3D建模Adam模型Github人体姿态估计开源项目深度学习计算机视觉
MonocularTotalCapture是一个开源项目,旨在实现野外环境下的单目3D人体姿态全方位捕捉。该系统同时捕捉人脸、身体和手部姿态,采用Adam可变形人体模型和OpenPose技术。基于CVPR19研究成果,项目提供完整的安装使用指南,为计算机视觉研究和3D重建提供了有力工具,仅限非商业研究使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号