Project Icon

PyTorch_Tutorial

PyTorch深度学习实践教程

PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。

pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
tensorflow-deep-learning - TensorFlow深度学习教程
GithubTensorFlow开源项目深度学习神经网络训练课程
本项目通过展示如何使用TensorFlow和Keras解决多种问题,教授深度学习的基本技能及其应用。课程内容包括关键视频教程、实践练习和项目实战,确保学习者能通过动手操作全面理解深度学习。适合任何级别的学者,帮助你提升个人和职业技能。
tutorials - PyTorch Lightning 教程,轻量级可执行笔记本集
GithubJupyter NotebookPytorchLightning开源项目教程机器学习
这是一个开源的 PyTorch Lightning 教程集合,提供轻量级、可执行和可复现的笔记本。项目涵盖 Lightning 的各种应用,包括最佳实践、数据集使用和开发技巧。内容适合不同水平的开发者,从入门到深入学习都有所涉及。
TensorFlow-2.x-Tutorials - 详解TensorFlow 2.0教程,掌握深度学习模型与应用
GithubTensorFlow开源项目机器学习深度学习神经网络视频教程
本教程详细介绍了TensorFlow 2.0的安装与基础操作,并包含线性回归、MNIST、CIFAR10等多个实战案例。通过配套的视频资源,帮助数据科学家和AI研究人员掌握TensorFlow 2.0在深度学习中的实际应用。
pytorch-sentiment-analysis - 使用PyTorch进行电影评论情感分析的教程
GithubPyTorchPython 3.9开源项目情感分析教程神经网络
该开源项目提供了一系列教程,使用PyTorch实现序列分类模型,主要用于从电影评论中预测情感。课程内容包括神经词包模型、递归神经网络(RNN)、卷积神经网络(CNN)和Transformer模型的理论与实践。此外,还讲解了如何使用torchtext库简化数据加载和预处理。如果有任何疑问或反馈,可以随时通过提交问题进行交流。
NLP-Tutorials - 从搜索引擎到预训练模型的全面教程
GithubNLP开源项目机器学习深度学习神经网络自然语言处理
NLP教程全面介绍多种自然语言处理模型,涉及搜索引擎技术、词汇及句子理解,并深入探讨seq2seq、Transformer、BERT和GPT等先进模型,包括实用的代码示例和理论分析。
tensorflow-nlp-tutorial - Tensorflow 2.0 自然语言处理实用教程
BERTGithubKoGPT-2NLPTensorflow开源项目딥 러닝
此项目包含一系列基于Tensorflow 2.0的自然语言处理教程。教程内容详细,基于e-Book中的理论,涵盖BERT、KoGPT-2、CTM等模型的文本分类、生成、关键词提取和话题建模实操。用户通过Colab链接即可在线练习,无需额外安装Python。该项目持续更新,提供最新的自然语言处理技术和代码示例。
TensorFlow-World - TensorFlow教程与代码优化指南
GithubTensorFlow开源项目教程机器学习深度学习
本项目提供全面易懂的TensorFlow教程,每个教程均附源代码和详细文档,帮助开发者和研究者快速高效地掌握TensorFlow。内容涵盖基础操作、机器学习、神经网络等多个领域,并提供虚拟环境安装指南,避免包冲突并支持环境定制。
Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
d2l-pytorch-slides - 基于PyTorch的深度学习教程幻灯片集 涵盖基础到高级主题
GithubPyTorch开源项目深度学习神经网络笔记本幻灯片计算机视觉
此项目包含一系列深度学习教程幻灯片,基于PyTorch框架。内容涵盖线性代数、卷积神经网络、循环神经网络和注意力机制等主题,从基础到高级逐步深入。幻灯片采用Jupyter Notebook格式,便于交互式学习和实践。资源适合系统学习深度学习知识的学习者和研究人员。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号