Project Icon

torchinfo

高级模型结构查看工具,适用于PyTorch

Torchinfo 提供了类似 TensorFlow `model.summary()` API 的功能,可视化和调试 PyTorch 模型。支持包括 RNN 和 LSTM 在内的多种层,并返回 ModelStatistics 对象。项目拥有简洁界面、多种自定义选项和详细文档,适用于 Jupyter Notebook 和 Google Colab,且经过综合单元测试和代码覆盖测试验证。

traceml - 机器学习数据追踪与可视化工具,支持多种深度学习框架
GithubPolyaxonTraceML开源项目数据追踪机器学习深度学习
TraceML 是一款强大的工具,用于机器学习和数据的追踪、可视化、解释和漂移检测。它与 Keras、PyTorch、TensorFlow、Fastai、Pytorch Lightning 和 HuggingFace 等多种深度学习和机器学习框架集成,方便用户记录和跟踪实验数据。TraceML 支持离线模式、多种数据可视化接口,并能生成详细的数据框架总结。
NeuralFlow - Mistral 7B模型中间层输出可视化工具
GithubMistral 7BNeural Flow中间层输出开源项目微调模型可视化
NeuralFlow是一个Python工具,用于可视化Mistral 7B语言模型的中间层输出。它生成512x256的热图,展示模型每层的输出。该工具可用于分析模型结构和监控fine-tuning过程中的变化。NeuralFlow将4096维张量数据转化为直观的视觉表现,为AI模型开发提供新的分析方法。
ai-edge-torch - PyTorch模型转TensorFlow Lite的开源解决方案
AI Edge TorchGithubPyTorchTensorFlow Lite开源项目模型转换移动设备部署
ai-edge-torch是一个开源Python库,用于将PyTorch模型转换为TensorFlow Lite格式。它支持在Android、iOS和IoT设备上本地运行模型,提供广泛的CPU支持和初步的GPU、NPU支持。该项目还包含生成式API,用于优化大型语言模型在设备端的性能。ai-edge-torch与PyTorch紧密集成,为边缘AI开发提供了实用的工具。
pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
sk2torch - 实现scikit-learn模型到PyTorch模块的转换
GithubPyTorchTorchScriptscikit-learnsk2torch开源项目模型转换
sk2torch是一个开源工具,用于将scikit-learn模型转换为PyTorch模块。它解决了GPU加速推理、模型序列化和梯度计算等问题。sk2torch支持多种scikit-learn模型,使机器学习从业者能够利用PyTorch的GPU加速、TorchScript序列化和反向传播功能。这个项目为scikit-learn用户提供了更多的灵活性和性能优化选择。
HolisticTraceAnalysis - 高效分析分布式训练性能瓶颈的开源工具
GPUGithubHolisticTraceAnalysisPyTorch分布式训练开源项目性能分析
HolisticTraceAnalysis是一款开源性能分析工具,用于识别分布式训练中的性能瓶颈。它分析PyTorch Profiler收集的跟踪数据,提供时间分解、内核分析、通信计算重叠等功能。支持Linux和Mac系统,适用于Python 3.8及以上版本。开发者可通过该工具深入分析和优化分布式训练性能。
pytorch-blender - 将Blender与PyTorch融合的深度学习框架
BlenderGithubPyTorchblendtorch人工视觉数据开源项目深度学习
blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。
attention-viz - 帮助理解Transformer模型在语言和视觉任务中的自注意力机制
GithubTransformerattention-viz可视化开源项目深度学习自然语言处理
此项目通过可视化技术帮助研究人员理解Transformer模型在语言和视觉任务中的自注意力机制,展示查询与关键向量的关系和整体模式。AttentionViz提供了交互式工具,支持多输入序列分析,提升了模型理解,并在多个应用场景中展现其实用性。
torch-mlir - 为PyTorch生态系统提供高级编译器支持,并实现与MLIR生态系统的高效集成
GithubLLVMMLIRPyTorchTorch-MLIRTorchScript开源项目
Torch-MLIR项目为PyTorch生态系统提供高级编译器支持,并实现与MLIR生态系统的高效集成。通过多种路径,该项目能够将PyTorch模型转换成Torch MLIR方言,简化硬件供应商的开发过程。此外,还提供了预构建快照,便于安装和使用,并通过示例指导用户完成模型转换和结果运行。该项目是LLVM孵化器的一部分,正在持续发展,且拥有广泛的社区支持和交流渠道。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号