Project Icon

deep_sort_pytorch

使用PyTorch实现的Deep Sort多目标追踪算法

本项目实现了基于PyTorch的Deep Sort多目标追踪算法,结合CNN模型进行特征提取,并采用YOLOv3和YOLOv5等先进检测器代替原始的FasterRCNN。项目还支持多GPU训练和多类别目标追踪,并引入了Mask RCNN实例分割模型。用户可以使用Python和PyTorch轻松启动和自定义项目,适用于行人再识别等任务。详细的更新日志和使用指南使其对机器学习及计算机视觉爱好者和研究人员尤为有用。

MixFormer - 基于迭代混合注意力的端到端目标跟踪框架
GithubMixFormer开源项目注意力机制深度学习目标追踪计算机视觉
MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。
perceiver-pytorch - Perceiver模型的PyTorch实现 迭代注意力处理多模态数据
GithubPerceiver开源项目注意力机制深度学习神经网络计算机视觉
perceiver-pytorch项目实现了Perceiver和PerceiverIO模型。这些模型采用迭代注意力机制,能够处理图像、视频和文本等多种输入数据。项目提供灵活的配置选项,包括输入通道数、频率编码和注意力头数等。通过语言模型示例,展示了PerceiverIO架构的通用性。该实现适合处理复杂多模态输入的深度学习研究和应用。项目提供了简单易用的API,支持快速集成到现有PyTorch项目中。代码实现了原论文中的核心概念,如交叉注意力和自注意力机制。此外,项目还包含了实验性的自下而上注意力版本,为研究人员提供了更多探索空间。
pytorch-hed - PyTorch重实现的全息嵌套边缘检测HED算法
GithubHEDPyTorch开源项目深度学习计算机视觉边缘检测
该项目是Holistically-Nested Edge Detection (HED)算法的PyTorch重新实现。项目提供命令行工具进行图像边缘检测,使用官方权重但在BSDS500数据集上ODS评分为0.774,略低于原始Caffe版本的0.780。项目包含使用说明、性能对比和引用信息,为研究和开发人员提供HED算法的实现参考。
MiVOS - 交互式视频对象分割方法与差异感知融合
DAVISGithubMiVOSPyTorch交互式分割开源项目视频对象分割
该项目介绍了一种模块化的交互视频对象分割方法,通过交互生成对象掩码并采用差异感知的融合模块进行处理。该方法在DAVIS和YouTube等基准测试中表现出色,并支持用户交互的GUI工具,简化了视频对象标注过程。项目还集成了多个预训练模型,并提供了快速下载和数据生成脚本,为研究人员和开发者提供了便捷高效的解决方案。
MeMOTR - 基于长期记忆的Transformer多目标跟踪方法
GithubMeMOTRTransformer多目标跟踪开源项目计算机视觉长期记忆
MeMOTR提出了一种基于Transformer的端到端多目标跟踪方法,通过长期记忆注入和定制记忆注意力层提升目标关联性能。该方法在DanceTrack和SportsMOT等数据集上展现出优秀的跟踪效果,为复杂场景的多目标跟踪提供了新思路。项目开源了代码、预训练模型和使用说明,便于研究者复现和改进。
Awesome-PyTorch-Chinese - PyTorch资源,教程、视频、实战项目和书籍推荐
GithubPyTorch书籍实战开源项目教程视频
详细介绍PyTorch资源,包括官方文档、教程、视频课程、NLP与CV实战项目及相关书籍,帮助各层次用户深入掌握PyTorch。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
DRL-Pytorch - PyTorch实现的深度强化学习算法集合
DRL算法GithubPyTorch人工智能开源项目强化学习深度学习
DRL-Pytorch项目提供多种常用深度强化学习算法的PyTorch实现,包括Q-learning、DQN变体、PPO、DDPG、TD3和SAC等。代码结构清晰统一,便于研究人员和开发者比较不同算法。项目还包含详细使用说明、依赖列表和学习资源推荐,有助于快速入门和实践。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号