Project Icon

ml-fastvit

高效混合视觉Transformer模型用于图像分类

FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。

vit-large-patch32-384 - 基于Transformer架构的大规模图像分类模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一个基于Transformer架构的大型视觉模型,在ImageNet-21k数据集上预训练,并在ImageNet 2012数据集上微调。模型采用图像分块和序列化处理方法,支持384x384分辨率的输入。ViT在多个图像分类基准测试中表现优异,可用于图像分类、特征提取等计算机视觉任务。该模型支持PyTorch框架,适合研究人员和开发者使用。
vit_tiny_patch16_384.augreg_in21k_ft_in1k - ViT-Tiny 轻量级视觉转换器模型实现图像分类与特征提取
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
ViT-Tiny是一款轻量级视觉转换器模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了先进的数据增强和正则化技术。模型仅有5.8M参数,能处理384x384尺寸的图像,通过timm库可轻松加载用于推理或进一步微调。ViT-Tiny在保持高性能的同时,大幅降低了计算资源需求,适合各类图像识别应用场景。
vit_large_patch14_clip_336.openai_ft_in12k_in1k - ViT图像分类与特征提取模型
GithubHuggingfaceImageNet-1kVision TransformerWIT-400M图像分类开源项目模型预训练模型
OpenAI的ViT图像分类模型,利用CLIP在WIT-400M上预训练,并在ImageNet数据集上微调,适合多种视觉任务。其高性能参数为研究与开发提供强大支持,通过示例代码,可轻松实现图像分类与嵌入功能。
vit-base-patch16-384 - Vision Transformer:基于图像分块的高效视觉识别模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于Transformer架构的视觉识别模型,在ImageNet-21k上进行预训练,并在ImageNet 2012上微调。模型采用图像分块和序列化处理方法,有效处理384x384分辨率的图像。ViT在多个图像分类基准测试中表现优异,适用于各种计算机视觉任务。该预训练模型为研究人员和开发者提供了快速开发高精度图像识别应用的基础。
vit_small_patch14_reg4_dinov2.lvd142m - 基于自监督学习的视觉Transformer用于图像特征提取和分类
GithubHuggingfaceVision Transformer图像分类图像特征开源项目模型深度学习自监督学习
该Vision Transformer (ViT) 图像特征模型通过自监督学习进行预训练,基于LVD-142M数据集并采用DINOv2方法。模型专为图像分类和特征提取设计,包含22.1M参数和29.6 GMAC的运算能力。其注册方法增强了处理518x518像素图像的效果,DINOv2技术有助于无监督视觉特征学习。此模型在图像嵌入应用中表现优异,并支持多种视觉分析与研究。用户可使用timm库简单调用和部署模型,适合多种机器学习场景。
mobilevit_s.cvnets_in1k - MobileViT 轻量级通用移动友好的图像分类模型
GithubHuggingfaceImageNet-1kMobileViTtimm图像分类开源项目模型特征提取
mobilevit_s.cvnets_in1k是一款基于MobileViT架构的图像分类模型,在ImageNet-1k数据集上进行了训练。该模型仅有5.6M参数和2.0 GMACs计算量,体现了其轻量级特性。它不仅可用于图像分类,还支持特征图提取和图像嵌入等功能。通过融合MobileNet的效率和Vision Transformer的性能,这个模型特别适合在计算资源有限的移动设备上应用。
dino-vitb8 - 无需微调,实现高效图像分类的自监督视觉转换器
GithubHuggingfaceImageNet-1kVision Transformer图像分类开源项目模型自监督学习预训练模型
Vision Transformer (ViT)模型通过DINO方法进行的自监督训练在ImageNet-1k数据集上预训练,注重提升图像特征提取,无需微调即可应用于图像分类,兼顾多种下游任务。可根据任务需求选择合适的微调版本。
ViTamin - 推动计算机视觉进入新时代的可扩展视觉语言模型
GithubViTamin图像处理开源项目深度学习视觉语言模型计算机视觉
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
vit_small_patch16_224.augreg_in21k_ft_in1k - 视觉Transformer模型实现图像分类与特征提取
GithubHuggingfaceImageNetViT图像分类开源项目模型深度学习神经网络
vit_small_patch16_224.augreg_in21k_ft_in1k是一个经过ImageNet-21k预训练和ImageNet-1k微调的Vision Transformer模型。它采用额外数据增强和正则化技术,适用于图像分类和特征提取。该模型拥有2210万参数,支持224x224图像输入,可通过timm库轻松加载使用。模型原始在JAX训练,后由Ross Wightman移植至PyTorch,为计算机视觉任务提供了强大的基础工具。
maxvit_base_tf_512.in21k_ft_in1k - MaxViT图像分类模型支持多尺寸特征提取和深度学习训练
GithubHuggingfaceImageNetMaxViT人工智能图像分类开源项目模型深度学习
MaxViT是谷歌研究团队开发的图像分类模型,通过ImageNet-21k预训练和ImageNet-1k微调实现。模型集成多轴注意力机制,总参数量119.9M,支持512x512分辨率输入。除图像分类外,还可输出多尺度特征图和嵌入向量,便于迁移至其他视觉任务。模型在ImageNet-1k测试中取得88.20%的分类准确率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号