Project Icon

Renate

自动神经网络再训练的持续学习解决方案

Renate是一个用于神经网络模型自动再训练的Python库,采用持续学习和终身学习算法。基于PyTorch和Lightning构建,通过Syne Tune实现超参数优化。该工具专门解决数据分布变化引起的灾难性遗忘问题,提升模型对新数据的适应能力。Renate支持云端部署,适合实际再训练场景,并提供便捷的高级超参数优化功能。

autonomous-learning-library - PyTorch深度强化学习库助力智能代理开发
GithubPyTorch开源项目智能体深度强化学习算法实现自主学习库
autonomous-learning-library是基于PyTorch的深度强化学习库,为快速构建和评估智能代理提供丰富组件。库中包含灵活的函数近似API、多种内存缓冲区和环境接口,并实现了A2C、DQN、PPO等主流算法。支持Atari、经典控制和机器人仿真等环境,集成Tensorboard等工具便于实验监控。该库特别强调模块化设计,便于研究人员快速实现和测试新想法。同时提供完整文档和示例项目,降低了强化学习研究的入门门槛。
neon - 深度学习框架,兼容多硬件,实现高效模型训练
GithubIntelMKLNervananeon开源项目深度学习框架
neon是Intel推出的深度学习框架,旨在实现最佳性能,兼容多种硬件。提供全面的教程和iPython笔记本,支持卷积层、RNN、LSTM、GRU和BatchNorm等常用层。预训练模型库和示例脚本涵盖VGG、强化学习、深度残差网络等。neon v2.0.0+优化了CPU性能,集成Intel Math Kernel Library,用户可快速安装并部署在CPU、GPU或Nervana硬件上。
fast_rnnt - 快速高效的RNN-T损失计算方法
GithubPyTorchRNN-T剪枝开源项目快速实现损失计算
fast_rnnt项目实现了一种快速高效的RNN-T损失计算方法。通过pruned rnnt算法,该方法使用简单joiner网络获取修剪边界,再评估完整非线性joiner网络。项目提供简单、平滑和修剪三种RNN-T损失计算功能,支持pip安装。与其他实现相比,fast_rnnt在计算速度和内存使用方面表现优异。
ktrain - 轻量级的深度学习和AI工具包
GithubTensorFlow Kerasktrain开源项目机器学习深度学习预训练模型
ktrain 是一个基于 TensorFlow Keras 的轻量级深度学习库封装,帮助用户快速构建、训练和部署各种机器学习模型。适用于文本、视觉、图表和表格数据,支持文本分类、图像识别、节点分类和因果推断等任务。无论是初学者还是有经验的研究人员,都能借助其简单的 API 和多种学习率策略,快速实现高效模型部署,支持导出到 ONNX 和 TensorFlow Lite。
Person_reID_baseline_pytorch - 小巧、友好、强大的 pytorch 工具
GPUGithubPytorch ReID对象识别开源项目教程深度学习
Pytorch ReID是一个高效且易用的对象重识别代码库,支持多种先进的模型与损失函数,如ResNet、Swin Transformer和Circle Loss。该项目自2017年起持续更新,拥有详细的教程与训练评估功能,性能在多篇顶级会议论文中得到验证,适合各种经验水平的用户使用。
neptune-client - 可伸缩的实验跟踪工具,简化团队基础模型训练
Githubneptune.ai实验跟踪开源项目数据处理机器学习模型训练
Neptune 提供一款高效实验跟踪平台,适用于团队基础模型训练。用户可记录大量运行数据,实时对比实验结果。其灵活日志记录、自定义仪表板、多节点支持,加速训练监控和优化。支持25+框架集成,是MLOps理想工具。
NeuRBF - 基于适应性径向基函数的高效神经场表示方法
GithubNeuRBF图像拟合开源项目神经场表示神经辐射场自适应径向基函数
NeuRBF是一种创新的神经场表示方法,通过适应性径向基函数实现高精度和模型紧凑性的平衡。该方法在图像拟合、SDF拟合和神经辐射场等任务中展现出优异性能,为计算机视觉和图形学研究提供了有力工具。项目提供了基于PyTorch的开源实现,并附有详细的安装和使用说明,便于研究人员复现和深入探索。
lerobot - 实用机器学习库助力实际机器人开发
GithubLeRobot开源项目强化学习机器人模拟环境预训练模型
LeRobot是一个基于PyTorch的机器人应用开发库,提供模型、数据集和工具。它侧重模仿学习和强化学习,包含预训练模型、人类示范数据集和仿真环境,降低机器人技术门槛。该库支持ALOHA、PushT和XArm等多种环境和策略,未来将扩展实际机器人支持。LeRobot旨在促进数据集和预训练模型的共享,推动机器人技术发展。
Reinforz - 智能教育平台 优化学习体验
AI工具AI教育平台个性化学习性能报告游戏化测验自动化学习任务
Reinforz是一款智能教育平台,通过自动化学术任务、个性化测验和游戏化元素优化学习体验。平台支持多种集成,为教育机构、教师和学生提供高效有趣的学习环境。
lightning-flash - 跨数据领域和任务的AI模型训练与处理解决方案
AIGithubPyTorchlightning-flash开源项目模型训练深度学习
Lightning Flash提供多任务和多数据领域的AI解决方案,用户只需三步即可完成数据加载、模型配置和微调。项目支持多种预训练模型和优化策略,简化深度学习工作流程,适用于各种数据域和任务类型。其功能包括模型预测、训练策略、优化器和调度器选择,以及自定义数据变换。Flash旨在让用户无需自行开发复杂的研究框架,即可在生产环境中应用AI模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号