Project Icon

Renate

自动神经网络再训练的持续学习解决方案

Renate是一个用于神经网络模型自动再训练的Python库,采用持续学习和终身学习算法。基于PyTorch和Lightning构建,通过Syne Tune实现超参数优化。该工具专门解决数据分布变化引起的灾难性遗忘问题,提升模型对新数据的适应能力。Renate支持云端部署,适合实际再训练场景,并提供便捷的高级超参数优化功能。

d3rlpy - 支持离线和在线深度强化学习的实用算法库
Githubd3rlpy安装开源项目强化学习离线RL算法
d3rlpy是一个为实践者和研究人员打造的深度强化学习库,支持离线和在线强化学习算法。无需掌握深度学习库,即可通过其直观的API使用多种先进算法。d3rlpy提供丰富的文档和教程,首创支持分布式Q函数,适用于机器人和医疗等复杂场景。兼容Linux、macOS和Windows,多种安装方式可供选择,欢迎试用和贡献代码。
TensorRT - 提升PyTorch推理效率的工具
CUDAGithubPyTorchTensorRTTorch-TensorRT安装开源项目
Torch-TensorRT将TensorRT的强大功能引入PyTorch,用户仅需一行代码即可显著提升推理性能。该工具支持在多个平台上安装,包括PyPI和NVIDIA NGC PyTorch容器。通过torch.compile或导出式工作流,用户可以高效优化和部署模型。Torch-TensorRT依赖CUDA和TensorRT,与Linux和Windows等多种平台兼容。提供丰富资源,包括教程、工具和技术讲座,供用户学习使用。
genrl - 强化学习算法库,提供快速基准测试和示例教程
GenRLGithubPyTorch基准测试开源项目强化学习算法实现
GenRL是一个基于PyTorch的强化学习库,提供可重现的算法实现和通用接口。它包含20多个从基础到高级的强化学习教程,并支持模块化和可扩展的Python编程。统一的训练和日志记录功能提高了代码复用性,同时自动超参数调整功能加速了基准测试。GenRL旨在支持新算法的实现,代码少于100行。适用于Python 3.6及以上版本,依赖于PyTorch和OpenAI Gym。
lightly - 简单易用的自监督学习工具,支持自定义骨干模型和分布式训练
GithubLightlyPyTorch多模型支持开源项目自监督学习计算机视觉
这个开源项目提供简单易用的自监督学习工具,支持自定义骨干模型和分布式训练。通过模块化设计,用户可以自由调整损失函数和模型头。项目还提供商业版本,包含用于嵌入、分类、检测和分割任务的预训练模型。此外,平台集成了主动学习和数据策划功能,适用于大规模数据处理和强大算法的应用。
OpenRLHF - 高性能强化学习框架助力大规模语言模型优化
GithubOpenRLHFRLHF框架分布式训练开源项目强化学习模型微调
OpenRLHF是一款基于Ray、DeepSpeed和Hugging Face Transformers构建的高性能强化学习框架。该框架简单易用,兼容Hugging Face模型和数据集,性能优于优化后的DeepSpeedChat。它支持分布式RLHF,能够在多GPU环境下进行70B+参数模型的全规模微调。OpenRLHF集成了多项PPO实现技巧以提升训练稳定性,同时支持vLLM生成加速和多奖励模型等先进特性,为大规模语言模型优化提供了强大支持。
wenet - 轻量精准的全栈语音识别解决方案
GithubWeNet安装指南开源工具包开源项目文档语音识别
WeNet项目提供生产就绪的全栈语音识别方案,强调精准与轻量化。项目在多个公共语音数据集上实现了最先进效果。WeNet易于安装和使用,支持Python编程和命令行操作,并兼容多种硬件,包括Ascend NPU。通过借鉴ESPnet和Kaldi等项目,WeNet提供高效的模型训练和部署方式。用户可在GitHub或微信讨论群中参与交流,获取技术支持和项目信息更新。
tianshou - 基于PyTorch的高性能模块化强化学习框架
GithubPyTorchTianshou开源项目强化学习深度学习算法库
Tianshou是基于PyTorch和Gymnasium的强化学习框架,提供高性能、模块化设计和友好接口。支持在线、离线、多智能体及基于模型的算法,兼顾实现简洁和灵活性。特点包括向量化环境、RNN训练、自定义状态/动作等。框架涵盖多种先进算法,配有完善文档和测试,适合研究和应用开发。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
beauty-net - 简洁灵活的PyTorch深度学习模板
GithubPyTorch对象导向开源项目模板美观高质量代码
BeautyNet是一个为PyTorch设计的简洁、灵活且可扩展的模板。该项目采用面向对象编程,代码质量高,结构清晰。BeautyNet提供简单的安装和运行步骤,便于快速上手和模型训练。这个模板旨在简化深度学习项目的开发流程,为研究人员和开发者提供高效的工作框架。
keras-tuner - 兼具易用性和可扩展性的超参数优化工具
GithubKerasTunerPython 3.8+TensorFlow 2.0+开源项目机器学习模型超参数优化
KerasTuner是一个便捷且可扩展的超参数优化工具,可以有效解决超参数搜索过程中遇到的问题。用户可以通过define-by-run语法轻松配置搜索空间,并使用贝叶斯优化、Hyperband和随机搜索算法找到模型的最佳参数值。该工具对研究人员十分友好,便于进行新搜索算法的实验。KerasTuner适用于Python 3.8+和TensorFlow 2.0+,并提供详细的开发者指南和API参考文档。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号