Project Icon

CrossFormer

融合跨尺度注意力的高效视觉Transformer

CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。

BEVFormer - 多摄像头鸟瞰图学习框架助力自动驾驶感知
BEVFormerGithub多相机感知开源项目目标检测自动驾驶鸟瞰图表示
BEVFormer是一个用于自动驾驶感知的开源框架,通过时空Transformer从多摄像头图像中学习统一的鸟瞰图表示。该方法利用预定义的网格查询,结合空间交叉注意力和时间自注意力机制,有效聚合多视角的空间和时序信息。在nuScenes测试集上,BEVFormer达到56.9%的NDS指标,显著超越现有方法,与激光雷达系统性能相当。这一创新为基于纯视觉的3D目标检测提供了新的基准。
mask2former-swin-large-cityscapes-panoptic - 在图像分割任务中,Mask2Former模型以高效提升性能
CityscapesGithubHugging FaceHuggingfaceMask2FormerTransformer图像分割开源项目模型
该项目使用Mask2Former模型,整合多尺度变形注意力和掩码注意力机制,在实例、语义及全景分割任务中展现卓越性能。相比之前的MaskFormer,Mask2Former实现效果提升与计算简化,在Cityscapes全景分割任务中表现突出,充分展示了其在图像分割中的应用潜力。
Transformer-in-Computer-Vision - Transformer在计算机视觉中的最新研究汇总
GithubTransformer开源项目最新论文深度学习视觉算法计算机视觉
项目汇总了最新的基于Transformer的计算机视觉研究论文,涵盖了视频处理、图像分类、目标检测和异常检测等广泛应用场景。用户可点击链接查看具体类别的论文和代码。若发现遗漏研究,欢迎提交问题或请求。最新版本更新于2024年8月8日,为科研人员与开发者提供丰富资源。
MixFormer - 基于迭代混合注意力的端到端目标跟踪框架
GithubMixFormer开源项目注意力机制深度学习目标追踪计算机视觉
MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。
RestoreFormer - 盲脸修复的跨域注意力模型
GithubRestoreFormer++人脸修复开源项目深度学习盲恢复高质量
RestoreFormer利用多头交叉注意力层实现高质量盲脸修复,其特点是从高质量字典中提取关键-值对用于面部重建。2023年9月项目添加了在线演示和更用户友好的推理方法,2023年1月新增了测试数据集。源代码和资源在GitHub提供,并包含详细的数据集准备和模型训练指南,支持多种评估指标。
xformers - Transformer 研究加速工具
GithubPyTorchTransformerxFormers开源项目注意力机制深度学习
xFormers 是一个加速 Transformer 研究的开源工具库。它提供可自定义的独立模块,无需样板代码即可使用。该项目包含前沿组件,专注于研究需求,同时注重效率。xFormers 的组件运行快速且内存利用率高,集成了自定义 CUDA 内核和其他相关库。它支持多种注意力机制、前馈网络和位置编码,适用于计算机视觉、自然语言处理等多个领域的研究工作。
mit-b2 - 高效语义分割的简单Transformer设计
GithubHuggingfaceSegFormerTransformer图像分类开源项目机器学习模型语义分割
SegFormer b2是一个在ImageNet-1k上预训练的编码器模型,采用分层Transformer结构。该模型专为语义分割任务设计,结合了简单高效的架构和出色的性能。虽然此版本仅包含预训练的编码器部分,但它为图像分类和语义分割的微调提供了坚实基础。SegFormer的创新设计使其在多个计算机视觉任务中展现出强大潜力。
segformer-b4-finetuned-ade-512-512 - 512x512分辨率下SegFormer的高效Transformer语义分割实现
ADE20kGithubHuggingfaceSegFormerTransformer图像处理开源项目模型语义分割
本项目展示了SegFormer模型如何应用在ADE20k数据集上,以512x512分辨率进行微调。该模型采用分层Transformer编码器与轻量级全MLP解码头的设计,并在ImageNet-1k预训练后用于语义分割。其适用于多个基准测试如ADE20K和Cityscapes,为视觉分割提供强大而灵活的工具。用户可以使用该模型进行图像的语义分割,或选择适合特定任务的微调版本。
MP-Former - 基于mask-piloted机制的先进图像分割模型
CVPR 2023GithubMP-FormerMask2FormerTransformer图像分割开源项目
MP-Former是一种新型图像分割transformer模型,采用mask-piloted机制改进分割效果。项目包含训练和评估代码,适用于实例分割和全景分割任务。基于Mask2Former架构开发,在COCO数据集上展现出良好性能。项目提供了复现论文实验的脚本,为计算机视觉研究提供参考实现。MP-Former在CVPR 2023上发表,提供了no noise和all-layer MP训练设置,12轮训练后在实例分割任务上达到40.15 AP。项目代码开源,安装过程与Mask2Former相同,便于研究者快速上手和进行进一步探索。
mask2former-swin-large-cityscapes-semantic - Mask2Former大型语义分割模型 适用多种图像分割任务
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一款先进的语义分割模型,基于Swin骨干网络在Cityscapes数据集上训练。该模型采用统一的掩码预测方法,可同时处理实例、语义和全景分割任务。通过引入多尺度可变形注意力Transformer和带掩码注意力的Transformer解码器,Mask2Former在性能和效率上均超越了先前的最佳模型。它为研究人员和开发者提供了一个强大的工具,可用于各种图像分割应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号