Project Icon

YOLOv8-TensorRT-CPP

用C++和TensorRT实现高效的YOLOv8模型推理

本文介绍了如何使用TensorRT的C++ API实现YOLOv8模型的推理,支持目标检测、语义分割和身体姿态估计,包括系统要求、安装步骤、模型转换和项目构建方法。内容中强调了在GPU上运行推理的注意事项和性能基准测试,提供了从PyTorch到ONNX模型转换的详细步骤,是开发计算机视觉应用的参考资料。

YOLOv8-TensorRT - 通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和推理解决方案
CUDAGithubONNXPyTorchTensorRTYOLOv8开源项目
本项目通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和高效推理解决方案。包括环境准备、模型导出、引擎构建和多种推理方法,支持Python和C++语言。特性涵盖ONNX模型导出、端到端引擎构建和模型推理,适用于图像和视频的不同输入源。支持Jetson设备,并附有详细的文档和脚本,便于操作,提升深度学习应用性能。
TensorRT-YOLO - 为YOLO目标检测模型提供推理加速解决方案
CUDAGithubTensorRT-YOLOYOLO开源项目推理加速目标检测
此项目基于TensorRT,为YOLO目标检测模型提供推理加速解决方案,支持YOLOv3至YOLOv10及PP-YOLOE系列。集成EfficientNMS插件及CUDA技术,有效提升推理效率。支持C++和Python,包含CLI快速导出和推理功能,并提供Docker一键部署。推荐CUDA 11.6及以上版本和TensorRT 8.6及以上版本。
ONNX-YOLOv8-Object-Detection - 将YOLOv8模型转换为ONNX格式的方法
GPUGithubONNXYOLOv8开源项目模型转换目标检测
本项目提供了一种将YOLOv8模型转换为ONNX格式的高效方法,支持在NVIDIA GPU或CPU上进行对象检测。确保输入图片尺寸与模型要求一致,以获得最佳检测精度。项目配有详细的安装指南和推理示例,包括图片、摄像头和视频推理,方便开发者快速上手并应用于实际场景。
tensorrtx - TensorRT深度学习网络实现库
GPU加速GithubTensorRTYOLO系列开源项目模型转换深度学习网络
TensorRTx项目使用TensorRT API实现主流深度学习网络。它提供灵活构建、调试和学习TensorRT引擎的方法,支持YOLO、ResNet、MobileNet等多种模型。兼容TensorRT 7.x和8.x版本,并包含详细教程和常见问题解答,方便用户快速入门。
DeepStream-Yolo - NVIDIA DeepStream SDK的YOLO模型配置与优化指南
CUDADeepStreamGithubNVIDIATensorRTYOLO开源项目
该项目为多个版本及平台的YOLO模型提供NVIDIA DeepStream SDK配置和优化指南,包括YOLOv5、YOLOv6、YOLOv7和YOLOv8等。项目功能涵盖INT8校准、动态批处理及GPU边界框解析,并提供详细的安装、使用和自定义模型指南,帮助用户实现高效的GPU处理和模型转换。
TensorRT_Tutorial - 深度学习推理加速实践指南
GPU加速GithubINT8量化TensorRT开源项目性能优化深度学习
TensorRT_Tutorial项目是一个综合性资源库,提供NVIDIA TensorRT深度学习推理加速的实用指南。项目包含中文文档翻译、视频教程、博客文章和代码示例,覆盖TensorRT的基础使用和高级优化。内容涉及核心功能介绍、实际应用经验和优化技巧,为深度学习从业者提升模型推理性能提供了宝贵参考。
jetson-inference - 深度学习部署与实时视觉识别
GithubNVIDIA JetsonPyTorchTensorRT实时视觉开源项目深度学习
NVIDIA Jetson设备上的深度学习推理和实时视觉处理库。使用TensorRT优化GPU网络运行,支持C++和Python, 以及PyTorch模型训练。功能包括图像分类、物体检测、语义分割等,适用于多种应用场景,如实时摄像头流和WebRTC网络应用。
tensorflow-yolov3 - 使用TensorFlow 2.0实现的YOLOv3目标检测教程
COCOGithubTensorFlow 2.0VOCYOLOv3开源项目目标检测
本文介绍了使用TensorFlow 2.0实现YOLOv3目标检测的方法,包括快速入门、训练自定义数据集和在VOC数据集上的评估。提供详细的代码示例和步骤说明,帮助开发者轻松训练和应用目标检测模型。文中附有中文博客链接,提供更多学习资源。
yolov5-deepsort-tensorrt - 基于YOLOv5和DeepSORT的Jetson设备目标跟踪系统
DeepSortGithubJetsonTensorRTYolov5开源项目目标跟踪
这个项目是YOLOv5和DeepSORT算法在Jetson设备上的C++实现,针对Jetson Xavier NX和Jetson Nano进行了优化。系统能够高效跟踪多个人头目标,在Jetson Xavier NX上处理70多个目标时可达到10 FPS。项目包含环境配置、模型生成和运行指南,支持自定义模型,并提供了不同YOLOv5版本的兼容性说明。适合需要在边缘设备上进行高性能目标跟踪的应用场景。
ultralytics - 适用于对象检测、跟踪、实例分割和图像分类等多种应用场景的多功能对象检测模型
GithubUltralyticsYOLOv8姿态估计实例分割开源项目目标检测
Ultralytics的YOLOv8是一款前沿对象识别模型,提供了与前代产品相比更优化的特性。适用于对象检测、跟踪、实例分割和图像分类等多种应用场景,其高速准确性和用户友好性使其成为AI领域开发者的优选。更多细节,请参阅官方文档或参与Discord社区互动。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号