Project Icon

SIGIR2020_peterrec

基于序列行为的参数高效迁移学习推荐方法

SIGIR2020_PeterRec提出了一种基于用户序列行为的参数高效迁移学习方法,用于改进推荐系统性能。该方法在冷启动等场景中表现出色。项目提供了多个大规模数据集,用于评估各类推荐模型,包括基础模型、可迁移模型、多模态模型和大语言模型。项目还包含PyTorch代码实现和详细的使用说明。

mxbai-rerank-large-v1 - 基于Transformers的文本智能重排序模型
GithubHuggingfaceTransformers开源项目文本处理机器学习模型模型训练自然语言处理
mxbai-rerank-large-v1基于Transformers架构设计的文本重排序开源模型。通过对搜索结果进行智能重排序,改善检索系统的准确率。该模型支持跨语言处理,广泛应用于搜索引擎和问答系统,部署简单且性能稳定。
peft - 大模型高效微调的先进方法
AccelerateDiffusersGithubLoRAPEFTTransformers开源项目
参数高效微调(PEFT)通过只调整少量额外参数来适配大规模预训练模型,大幅降低计算和存储成本,同时性能接近完全微调模型。PEFT与Transformers、Diffusers和Accelerate集成,支持多种下游任务的训练和推理。了解更多方法和优势,请访问官方文档和教程。
recurrent-memory-transformer-pytorch - Recurrent Memory Transformer的PyTorch实现助力超长序列处理
GithubPyTorchRecurrent Memory Transformer人工智能开源项目深度学习自然语言处理
Recurrent Memory Transformer的PyTorch实现项目致力于解决超长序列处理问题。该模型通过创新的记忆机制和高效注意力机制,可处理长达百万token的序列。项目提供简便的安装使用方法,支持XL记忆和记忆回放反向传播等先进功能。这一实现在长序列处理、因果推理和强化学习等领域展现出优异性能,为AI研究和应用开发提供了实用工具。
transfer-learning-conv-ai - 使用迁移学习构建最先进的对话式 AI
Conversational AIGithubHuggingFaceOpenAI GPTTransfer Learning开源项目预训练模型
transfer-learning-conv-ai项目提供了一套完整的代码库,使用OpenAI GPT及GPT-2模型通过迁移学习技术培训对话型AI代理。用户可以在1小时内完成模型训练,还可以直接使用预训练模型。本代码库支持在单GPU或多GPU下训练,并兼容Docker环境。适合参与NeurIPS 2018对话竞赛。
MotionBERT - 多任务人体运动表征学习框架
GithubMotionBERT人体动作表示姿态估计开源项目深度学习计算机视觉
MotionBERT是一个多任务人体运动表征学习框架,整合了3D人体姿态估计、基于骨骼的动作识别和人体网格恢复等任务。该项目提供预训练模型和下游任务实现,支持自定义视频推理和生成以人为中心的视频表征。MotionBERT在多个基准测试中展现出优异性能,为人体运动分析研究提供了一个统一且高效的解决方案。
ms-marco-MiniLM-L-6-v2 - 高性能跨编码器模型用于信息检索和文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
ms-marco-MiniLM-L-6-v2是一款针对MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现卓越,能够高效编码和排序查询与文本段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集评测中,模型展现出优异性能,NDCG@10和MRR@10分别达到74.30和39.01。ms-marco-MiniLM-L-6-v2兼顾效率与准确性,每秒可处理1800个文档,为信息检索应用提供了实用解决方案。
bge-reranker-v2.5-gemma2-lightweight - 多语言轻量级模型提供高效排序和相似度评估
GithubHuggingfacebge-reranker-v2.5-gemma2-lightweight压缩比多语言开源项目性能表现模型轻量化
该多语言轻量级排序模型通过词元压缩和逐层优化,节省资源同时维持高性能。根据使用场景和资源限制,用户可灵活选择模型的压缩比例和输出层次,实现高效推理。项目已在BEIR和MIRACL上达到新SOTA性能,技术细节报告将于稍后发布。
MotionLLM - 融合视频和动作数据的人类行为理解先进AI模型
GithubMotionLLM人工智能人类行为理解多模态学习大语言模型开源项目
MotionLLM是一个人类行为理解框架,通过融合视频和动作序列数据来分析人类行为。该项目采用统一的视频-动作训练策略,结合粗粒度视频-文本和细粒度动作-文本数据,以获得深入的时空洞察。项目还包括MoVid数据集和MoVid-Bench评估工具,用于研究和评估人类行为理解。MotionLLM在行为描述、时空理解和推理方面展现出优越性能,为人机交互和行为分析研究提供了新的方向。
gitrec - 基于用户兴趣的GitHub仓库推荐系统
GitHubGitRecGithub开源项目推荐系统浏览器扩展
GitRec是一个基于Gorse的开源GitHub仓库推荐系统。该系统通过浏览器扩展,根据用户收藏的仓库智能推荐相关项目,并为热门仓库匹配相关资源。GitRec支持Chrome、Edge和Firefox等主流浏览器,安装便捷。系统采用Docker部署,支持数据导入和可视化监控,为开发者提供个性化的GitHub仓库发现服务,有助于提高项目探索效率。
mup - 大规模神经网络的稳定超参数优化方法
GithubMaximal Update ParametrizationMuTransfer大规模神经网络开源项目深度学习超参数稳定
Maximal Update Parametrization (μP) 提供了一种适用于大规模神经网络的稳定超参数优化方法,例如预训练的Transformer等。利用μP,模型的超参数在不同大小的网络中可保持稳定,减少了在探索和扩展过程中的不确定性和脆弱性。该工具包简化了在PyTorch模型中实现μP的流程,是优化和调优深度学习模型的强大工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号