Project Icon

table-transformer

基于深度学习的表格提取与结构识别模型

Table Transformer (TATR)是一种基于对象检测的深度学习模型,用于从PDF和图像中提取表格。该模型支持表格检测、结构识别和功能分析,并提供完整的训练和推理代码。TATR还发布了在PubTables-1M等大规模数据集上的预训练模型权重,有助于实现高精度的表格提取和分析。

manga-ocr - 日本漫画光学字符识别工具,支持多种文本处理场景
GithubManga OCRPythonTransformers光学字符识别开源项目日本放送協会
Manga OCR 是一款基于Transformer的自定义端到端模型的光学字符识别工具,专为日本漫画设计。它可以识别垂直和平行文本、带有振假名的文本、覆盖在图像上的文本、各种字体以及低质量图像。Manga OCR 支持一次性识别多行文本,适用于漫画中的文本气泡。同时,该项目还提供与GUI阅读器和HTML覆盖生成工具的集成,便于用户创建完整的阅读和挖掘工作流程。
TransMorph_Transformer_for_Medical_Image_Registration - 基于Transformer的无监督医学图像配准方法
GithubPyTorchTransMorphTransformer医学影像配准开源项目深度学习
TransMorph是一个利用Transformer架构进行无监督医学图像配准的开源项目,结合了Vision Transformer和Swin Transformer技术。提供多个模型变体和多种损失函数,支持单模态和多模态配准,公开了训练脚本和预训练模型,并在MICCAI 2021 L2R挑战中表现出色。
ViTAE-Transformer-Remote-Sensing - 遥感图像解释的视觉变压器模型集合
Github图像分割开源项目深度学习目标检测计算机视觉遥感
ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。
doctr - 由深度学习提供支持的无缝、高性能和可访问的库,用于 OCR 相关任务
GithubOCRPyTorchTensorFlowdocTR开源项目文本识别
docTR提供高效、准确的OCR解决方案,支持PDF和图像文件,基于TensorFlow 2和PyTorch。能快速检测识别文档文字,并提供多种处理旋转文档选项。用户可使用预训练模型快速上手或自定义架构。解析结果可视化且支持导出为JSON格式,方便后续处理和分析。
tracr - 开源编译器实现RASP程序到Transformer权重的转换
GithubRASPTracrtransformer开源项目编译器解释性
tracr是一个开源编译工具,可将RASP程序转换为Transformer权重。它通过追踪程序、推断基向量和中间表示,最终生成Haiku模型。tracr支持类别和数值表示,使用BOS标记实现多种操作,并探索了残差流压缩嵌入。研究人员可以利用tracr编译RASP程序,查看中间激活值,深入分析模型行为,为Transformer可解释性研究提供实验平台。
pytorch-transformer - 基于PyTorch的Transformer模型实现与Attention机制全解析
GithubYouTube视频pytorch-transformer实现开源项目步骤注意力机制
该项目实现了基于PyTorch的Transformer模型,通过详细的步骤和代码讲解,辅以‘Attention is all you need’论文的实现和YouTube视频教程,帮助用户掌握并应用Transformer模型。适合从事深度学习、自然语言处理的开发者和研究者。
transformers-interpret - 快速解读Transformer模型的工具,只需2行代码
GithubTransformers Interprettransformers可视化开源项目文本分类解释工具
Transformers-interpret是一款为Transformer模型设计的解释工具,只需简单代码即可实现。支持文本和计算机视觉模型,并可在笔记本中展示或保存为PNG和HTML文件。通过导入预训练模型和tokenizer,用户能快速获得预测分类解释,并提供可视化功能。此项目基于Captum库构建,支持多标签分类等功能,帮助开发者深入理解模型决策。
Transformers-Tutorials - Transformers库深度学习模型教程集合
GithubHuggingFaceTransformers开源项目深度学习自然语言处理计算机视觉
这个项目汇集了基于HuggingFace Transformers库的多种深度学习模型教程,涵盖自然语言处理和计算机视觉等领域。内容包括BERT、DETR、LayoutLM等模型的微调和推理示例,展示了在图像分类、目标检测、文档分析等任务中的应用。所有代码采用PyTorch实现,并提供Colab notebooks方便实践。
Tabular-data-generation - 开源表格数据生成工具库支持多种生成模型
GANGithub开源项目数据增强时间序列生成机器学习表格数据生成
Tabular-data-generation是一个开源的表格数据生成工具库,集成了GAN、TimeGAN、扩散模型和大语言模型等多种生成技术。通过简洁的API,研究人员可方便地生成高质量合成数据,应用于数据增强和隐私保护等领域。项目提供了完整的使用文档、实验设计和结果分析,为表格数据生成研究提供了有价值的参考资源。
simple-hierarchical-transformer - 分层Transformer模型探索多层次预测编码
GithubTransformer开源项目注意力机制深度学习神经网络自然语言处理
这个项目提出了一种在GPT模型中实现多层次预测编码的方法。它通过在Transformer中引入多层结构,结合局部注意力和全局信息传递。实验结果显示,该方法在维持性能的同时提升了效率。项目允许自定义层次结构、维度和注意力窗口大小,为研究人员提供了探索分层Transformer的实验工具。项目代码支持灵活配置,包括调整层次数量、模型维度和注意力窗口大小。这种设计使研究人员能够方便地进行不同参数的对比实验,有助于深入理解分层Transformer的性能特点。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号