Project Icon

aimet

深度学习模型优化的量化与压缩工具

AI Model Efficiency Toolkit (AIMET) 提供先进的模型量化和压缩技术,专注于优化已训练的神经网络模型。其主要功能包括跨层均衡、偏差校正、自适应舍入和量化感知训练,显著提升模型运行性能,降低计算和内存要求,并保持任务精度。AIMET 兼容 PyTorch、TensorFlow 和 ONNX 模型,通过 AIMET Model Zoo 提供优化的8位推理神经网络模型。同时,AIMET 支持空间SVD和通道剪枝等压缩技术,并提供可视化工具检查模型量化和压缩效果。

Phi-3.1-mini-128k-instruct-GGUF - 量化指导优化内存资源使用
GithubHuggingfacePhi-3-mini-128k-instruct下载文件开源项目模型模型选择量化高质量
项目利用llama.cpp和imatrix技术对模型进行量化,提供适合不同内存需求的文件。用户可通过huggingface-cli根据硬件选择量化格式,实现速度与质量平衡。同时,项目提供特性图表以指引用户选择‘I-quant’或‘K-quant’方法,满足不同硬件环境性能要求。
Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic - 多语种量化优化模型,显著降低内存占用
GithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic多语言支持开源项目文本生成模型模型优化量化
通过将权重和激活量化为FP8格式,该项目优化了Llama-3.1-Nemotron模型,显著降低了GPU内存与磁盘的占用。模型适用于商业与研究,支持多语言开发和会话助手的构建。利用vLLM,可以实现高效部署并具有OpenAI兼容性。Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic在诸多测试中表现优良,在Arena-Hard评估中达99.41%的恢复率。
Replete-Coder-Llama3-8B-GGUF - 基于llama.cpp优化的高效量化方法提升文本生成性能
GithubHuggingfaceReplete-Coder-Llama3-8B开源项目数据集文本生成模型模型压缩量化
该开源项目利用llama.cpp进行模型量化,适用于HumanEval和AI2推理挑战等任务,提供多种量化选项如Q8_0和Q6_K,适应不同内存要求,同时优化性能表现。I-quant量化在低于Q4时表现良好,用户可依据自己的设备内存和GPU VRAM选择合适的量化格式,通过huggingface-cli便捷获取所需文件。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
Qwen2.5-32B-AGI-GGUF - Qwen2.5-32B-AGI模型量化与性能优化概述
GithubHuggingfaceQwen2.5-32B-AGI开源项目文本生成权重模型模型优化量化
介绍Qwen2.5-32B-AGI在Llamacpp中的量化模型,强调文本生成性能的提升。多种量化格式(如Q8_0,Q6_K_L)满足不同需求,结合embed/output量化,适应低RAM环境。提供模型选择、下载与运行指南,含基于ARM芯片的性能优化方法。
Embedded-Neural-Network - 深度神经网络压缩与加速技术综述
Github剪枝开源项目模型量化硬件加速器神经网络压缩稀疏化
Embedded-Neural-Network项目汇集了减小深度神经网络模型大小和加速ASIC/FPGA应用的前沿研究。内容涵盖网络压缩、硬件加速等领域,包括参数共享、知识蒸馏、定点训练、稀疏正则化和剪枝等技术。项目还整理了相关教程和重要会议论文。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
AutoGPTQ - 基于GPTQ算法的LLM量化与推理优化工具包
AutoGPTQGPTQ算法Github安装指南开源项目推理速度量化模型
AutoGPTQ是基于GPTQ算法的LLM量化工具包,支持多种模型类型和硬件平台的推理优化,整合Marlin与Exllama内核,提升推理速度与性能,适合在资源受限环境中部署高效的语言模型。
Midnight-Miqu-70B-v1.5-i1-GGUF - Midnight-Miqu-70B-v1.5量化模型:优化AI实施的多样化策略
GithubHuggingfaceMidnight-Miqu-70B-v1.5变压器库合并工具开源项目模型模型使用量化
此项目提供Midnight-Miqu-70B-v1.5的多种GGUF量化文件,采用权重和imatrix量化,支持多种规格和类型如IQ1至IQ4及Q5、Q6,适应速度、质量和空间需求的平衡。用户可参考TheBloke的README获取操作指南,适合寻求优化AI模型效率的开发者,助力高效机器学习模型部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号