Project Icon

aimet

深度学习模型优化的量化与压缩工具

AI Model Efficiency Toolkit (AIMET) 提供先进的模型量化和压缩技术,专注于优化已训练的神经网络模型。其主要功能包括跨层均衡、偏差校正、自适应舍入和量化感知训练,显著提升模型运行性能,降低计算和内存要求,并保持任务精度。AIMET 兼容 PyTorch、TensorFlow 和 ONNX 模型,通过 AIMET Model Zoo 提供优化的8位推理神经网络模型。同时,AIMET 支持空间SVD和通道剪枝等压缩技术,并提供可视化工具检查模型量化和压缩效果。

Mistral-Small-22B-ArliAI-RPMax-v1.1-GGUF - AI模型量化方法提升硬件性能与资源效率
GithubHuggingfaceMistral-Small-22B-ArliAI-RPMax-v1.1基于ARM的优化开源项目性能模型模型下载量化
通过llama.cpp进行量化优化,AI模型适用于各种RAM配置和资源受限环境。多种量化选项可供选择,从高质量到低资源占用,确保最佳性能表现。适用于ARM以及其他特定硬件,通过选择I-quant和K-quant格式实现速度与质量的平衡,优化AI推理性能。
low-bit-optimizers - 4位优化器技术减少内存占用 提升大规模模型训练能力
4位优化器AdamWGithub内存效率开源项目神经网络训练量化
Low-bit Optimizers项目实现了一种4位优化器技术,可将优化器状态从32位压缩至4位,有效降低神经网络训练的内存使用。通过分析一阶和二阶动量,该项目提出了改进的量化方法,克服了现有技术的限制。在多项基准测试中,4位优化器实现了与全精度版本相当的准确率,同时提高了内存效率,为大规模模型训练开辟了新途径。
FlagAI - 高效易用的大规模AI模型开发工具
FlagAIGithub中文任务多模态大规模模型并行训练开源项目
FlagAI是一款高效易用的大规模AI模型开发工具。它支持Aquila、AltCLIP、GLM等30多种主流模型的快速部署和微调,特别擅长中文自然语言处理任务。FlagAI可用于文本分类、信息抽取、问答、摘要生成等多种应用场景,并提供便捷的少样本学习工具。此外,FlagAI支持简洁的并行训练实现,有助于提高开发效率。
Knowledge-Distillation-Toolkit - 开源知识蒸馏工具包助力机器学习模型压缩
GithubPyTorch学生模型开源项目教师模型模型压缩知识蒸馏
Knowledge-Distillation-Toolkit是一个基于PyTorch和PyTorch Lightning的开源工具包,用于简化机器学习模型压缩过程。通过知识蒸馏技术,用户只需提供教师模型、学生模型、数据加载器和推理管道即可实现模型压缩。该工具包支持多种优化方法和学习率调度器,并提供详细的使用说明和示例代码,方便研究人员和开发者进行模型压缩实验。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
nni - 可自动执行特征工程、神经架构搜索、超参数调优和深度学习的模型压缩
GithubNNI开源项目架构搜索模型压缩神经网络智能优化超参数调整
NNI提供一站式解决方案,支持自动化的特征工程、神经架构搜索、超参数调整和模型压缩。它兼容多种框架,并提供详尽的API、丰富的示例及全面的教程。适用于多种训练环境,包括本地、远程SSH服务器和Kubernetes,帮助推动开源社区的技术发展。
gemma-2-2b-it-bnb-4bit - Gemma模型量化优化实现快速微调与内存高效管理
GemmaGithubHuggingfacetransformers开源项目机器学习模型模型微调模型量化
这是一个面向Gemma-2-2b模型的量化优化项目,集成了bitsandbytes和Unsloth技术,显著提升了模型微调效率并降低内存占用。项目通过Google Colab提供开箱即用的运行环境,支持一键式模型优化,并可将优化后的模型导出为GGUF格式或部署至vLLM平台。该方案特别适合资源受限环境下的模型优化需求。
Replete-LLM-V2.5-Qwen-32b-GGUF - 量化模型文件下载指南,通过选择适合的文件优化性能
GithubHuggingfaceReplete-LLM-V2.5-Qwen-32b嵌入输出权重开源项目文本生成模型视觉处理量化
该项目使用llama.cpp工具进行模型量化,提供多种Replete-LLM-V2.5-Qwen-32b模型文件下载选项。每种文件类型均说明其特性,如高质量和性能等,并适应不同硬件环境,以帮助用户根据需求优化模型质量或速度。文件适用于多种RAM和VRAM配置,便于在不同系统中实现优异性能。
ColossalAI - 提升大型AI模型训练的效率和可访问性
AI加速Colossal-AIGithub人工智能分布式训练大模型并行训练开源项目热门
Colossal-AI致力于使大型AI模型的训练更加经济、快速且易于获取。通过支持多种并行策略,包括数据并行、流水线并行、张量并行和序列并行,Colossal-AI可以大幅提高大规模模型训练的速度。此外,还集成了异构训练和零冗余优化器技术,使得在多GPU集群上的训练过程更加高效和灵活。Colossal-AI通过这些先进的功能,已被广泛应用于生产和研究场景,显著推动了AI技术的进步和应用。
gemma-2-9b-it-GGUF - AI语言模型量化版本满足多种硬件需求
GPU内存优化GithubHuggingfacegemma-2-9b-it开源项目文件格式转换机器学习模型模型量化
本项目提供Google Gemma 2 9B模型的多种量化版本,涵盖从高质量Q8_0到轻量级IQ2_M。详细介绍了各版本特点、文件大小和推荐用途,并附有下载使用指南。这些优化版本在保持性能的同时大幅减小体积,适配不同硬件和内存需求,使模型能在更多设备上运行。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号