Project Icon

sports

体育中的对象检测与影像分析

该项目旨在通过对象检测、图像分割和关键点检测等技术,解决体育分析中的多项挑战。提供的体育数据集和工具包能够优化球体追踪、球员号码识别、球员追踪和重新识别,以及相机校准功能。用户可以在Python环境下安装源代码,并利用开源数据集推进体育数据分析的发展。

CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
awesome-object-detection - 提供涵盖R-CNN至YOLOv3等系统目标检测资源
Fast R-CNNFaster R-CNNGithubMask R-CNNR-CNNYOLO开源项目
awesome-object-detection为研究者和开发者提供涵盖R-CNN至YOLOv3等系统目标检测资源,适用于学术研究与实际应用。
vid2player3d - 基于广播视频的物理模拟网球技能学习系统
GithubSIGGRAPH开源项目机器学习物理模拟网球技能视频分析
vid2player3d是一个从广播视频中学习网球技能的物理模拟系统。该项目结合物理模拟和机器学习技术,使用分层控制器架构,包括低级模仿策略、运动嵌入和高级规划策略。系统在IsaacGym环境中实现,能够捕捉真实选手的动作特征,为虚拟体育训练和娱乐应用提供了新的技术方案。
Realtime_Multi-Person_Pose_Estimation - 实时多人人体姿态估计的开源实现
CVPRGithubMSCOCO Keypoints ChallengeOpenPosePart Affinity FieldsRealtime Multi-Person Pose Estimation开源项目
该项目展示了一种无需人体检测器的实时多人人体姿态估计方法,曾获2016年MSCOCO关键点挑战赛冠军等多个奖项。项目提供了C++、TensorFlow、Pytorch等多种实现版本,适用于不同应用场景。页面还包括详细的测试与训练步骤,以及相关的代码库和资源链接,适合研究人员和开发者使用。
opencv_zoo - OpenCV深度学习模型库及多平台性能评测
GithubOpenCV人工智能应用开源项目模型性能基准深度学习模型计算机视觉
opencv_zoo是一个针对OpenCV DNN优化的深度学习模型库,涵盖人脸检测、目标跟踪、图像分割等多种计算机视觉任务。该项目提供各类预训练模型,并包含多平台性能基准测试结果,便于开发者选择合适模型。此外,项目还提供详细的安装指南和使用示例,有助于快速集成和应用。
Be Your Best Portal - 创新足球训练平台提升视觉扫描和决策能力
AI工具Be Your Best决策能力扫描率视觉训练足球训练
Be Your Best为足球运动员提供创新的视觉扫描和决策能力训练。该平台通过定制化方案平均提高球员28%的扫描率,有效改善前场传球、控球和战术执行。配套应用程序提供数据分析、进度追踪和排行榜功能,助力技能提升。阿森纳的厄德高和谢菲尔德联的本·奥斯本等职业球员对其训练效果给予肯定。
NBA-Machine-Learning-Sports-Betting - 使用机器学习预测NBA比赛结果与优化投注策略
GithubNBAPython体育博彩开源项目机器学习神经网络
本项目使用机器学习技术预测NBA比赛的胜负和投注选项,通过神经网络分析2007-08赛季以来的球队和赔率数据,胜率约为69%,胜赔预测准确率约为55%。输出数据包括球队的期望值和Kelly标准推荐的投注比例。该项目使用了Tensorflow、XGBoost、Numpy和Pandas等Python库,并提供命令行工具和Flask应用以便用户浏览数据。
yolov3-tf2 - YOLOv3的TensorFlow实现,目标检测解决方案
GithubTensorFlow 2.0YoloV3开源项目检测训练预训练权重
该项目采用TensorFlow 2.0实现YOLOv3,提供预训练权重、推理示例和迁移学习功能,支持GPU加速、eager模式和图模式训练,并集成absl-py。用户可以方便地安装、训练和进行实时视频检测,同时支持TF模型导出和Serving。
Hooper - 智能篮球数据分析和自动集锦生成应用
AI工具AI混剪Hooper比赛回放篮球统计运动数据分析
Hooper是一款利用人工智能技术的篮球数据分析应用,可通过手机视频自动生成比赛统计和精彩集锦。支持从1v1到5v5的各种比赛形式,适用于街球和正式赛事。该应用能自动跟踪球员表现,生成详细数据和精彩时刻剪辑,为篮球爱好者提供专业级的分析和视频服务,助力比赛回顾和技能提升。
notebooks - 使用 SOTA 计算机视觉模型和技术的示例和教程
DETRGPT-4 VisionGithubRoboflowYOLO开源项目计算机视觉
提供详尽的计算机视觉教程,包括ResNet、YOLO、DETR等经典模型,以及最新的Grounding DINO、SAM和GPT-4 Vision技术。这个资源库适合初学者和专家学习最前沿的计算机视觉方法和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号