Project Icon

CAGrad

高效优化多任务学习的梯度冲突

CAGrad是一种多任务学习算法,专注于解决梯度冲突问题。该方法通过冲突避免策略平衡各任务目标,在图像预测和强化学习领域表现出色。CAGrad实现简洁,适用于复杂的多任务场景,为相关研究提供新思路。该项目已被NeurIPS 2021接收,并提供了完整的源代码和实验指南。

GLEE - 实现多任务图像和视频处理的通用视觉基础模型
GLEEGithub多任务模型实例分割开源项目目标检测计算机视觉
GLEE是一个通用对象基础模型,在超过1000万张来自多个数据集的图像上进行联合训练。该模型能同时处理多种以对象为中心的视觉任务,并在多个基准测试中保持领先性能。GLEE具有出色的通用性和零样本迁移能力,可作为增强其他架构或模型的基础组件。这项研究被CVPR2024接受为亮点论文,研究团队计划开源相关代码和预训练模型。
OpenGraph - 图神经网络零样本学习的突破性研究
GithubOpenGraph图生成图神经网络大语言模型开源项目零样本学习
OpenGraph是一个创新的图基础模型,通过从大语言模型中提取零样本图泛化能力,解决了图神经网络领域的关键技术挑战。该模型引入了统一图标记器、可扩展图transformer和基于大语言模型的数据增强机制,在多种场景下展现出优异的零样本图学习性能。这项研究为图神经网络的泛化能力提升和应用场景拓展开辟了新方向。
autograd - 支持Python和NumPy的高效自动微分库
AutogradGithubNumPyPython开源项目梯度优化自动微分
Autograd是一个自动微分库,可对原生Python和NumPy代码进行微分。它支持反向模式和前向模式微分,能高效计算标量函数对数组参数的梯度。Autograd兼容Python的多数特性,如循环、条件语句、递归和闭包,并支持高阶导数。这个库主要应用于基于梯度的优化,在机器学习、神经网络和科学计算等领域有广泛应用。
C-Tran - Transformer在多标签图像分类中的应用
GithubTransformers图像分类多标签分类开源项目深度学习计算机视觉
C-Tran是一个探索Transformer在多标签图像分类中应用的开源项目。该项目提出了一种通用多标签图像分类方法,在COCO80和VOC20等数据集上展现出优秀性能。项目包含完整的训练和运行指南,涵盖数据处理和模型训练等关键步骤。C-Tran为计算机视觉领域提供了新的研究方向,对推进多标签图像分类技术具有重要意义。
Graph-Adversarial-Learning - 图对抗学习攻防技术与研究进展综述
Github图对抗学习图神经网络开源项目攻击方法论文综述防御策略
该项目是一个图对抗学习综合资源库,收录2017年至今的攻击、防御和鲁棒性认证相关论文。资源按字母、年份和会议分类,并提供代码实现汇总。内容涵盖图神经网络攻击方法、防御策略和稳定性研究,为图对抗学习研究提供重要参考。
ml-aim - 自回归图像模型预训练的突破性进展
AIMGithub图像特征大规模模型开源项目自回归图像模型预训练
AIM项目开发了一系列采用自回归生成目标预训练的视觉模型。研究发现,图像特征的自回归预训练呈现出与大型语言模型类似的扩展性。该项目能够将模型参数轻松扩展到数十亿级,并能有效处理大规模未筛选的图像数据。AIM提供多种预训练模型,兼容PyTorch、MLX和JAX等多个框架,为计算机视觉领域的研究与应用提供了有力支持。
CAT - 创新图像恢复模型 强化远程特征建模
GithubTransformer卷积神经网络图像修复开源项目自注意力机制长程依赖
CAT是一种创新的图像恢复模型,采用矩形窗口自注意力机制扩大特征提取范围。模型通过水平和垂直矩形窗口并行聚合特征,实现窗口间交互。结合CNN的局部特性,CAT在全局-局部特征耦合方面表现出色。实验证实该方法在多种图像恢复任务中超越了现有技术水平。
FlagAI - 高效易用的大规模AI模型开发工具
FlagAIGithub中文任务多模态大规模模型并行训练开源项目
FlagAI是一款高效易用的大规模AI模型开发工具。它支持Aquila、AltCLIP、GLM等30多种主流模型的快速部署和微调,特别擅长中文自然语言处理任务。FlagAI可用于文本分类、信息抽取、问答、摘要生成等多种应用场景,并提供便捷的少样本学习工具。此外,FlagAI支持简洁的并行训练实现,有助于提高开发效率。
awesome-llm-and-aigc - 大型语言模型、视觉基础模型及人工智能生成内容的关键项目、数据集和应用合集
AI Generated ContentGithubLarge Language Model应用开发平台开源项目数据集神经网络架构
awesome-llm-and-aigc项目整合了大型语言模型、视觉基础模型及人工智能生成内容的关键项目、数据集和应用。项目涵盖了神经网络架构、多种语言和视觉模型的开发实现,到具体的应用平台,为研究人员和开发者提供全面资源。适合寻找最新的行业动态、学习资源和社区交流的技术人员和爱好者。通过加入关键词如'开源', 'AI技术', '整合',进一步提高SEO优化效率。
DeepLagrangianFluids - 拉格朗日流体模拟的连续卷积神经网络方法
Github开源项目机器学习流体模拟深度学习物理引擎粒子系统
DeepLagrangianFluids项目实现了基于连续卷积的粒子流体模拟网络,源于ICLR 2020会议发表的研究成果。项目包含数据生成、模型训练和预训练模型运行的完整代码,支持PyTorch和TensorFlow框架,并集成Open3D等库实现高效模拟与可视化。这种新方法在流体动力学模拟的准确性和计算效率方面取得了显著进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号