Project Icon

pytorch-receptive-field

PyTorch CNN感受野计算与可视化工具

pytorch-receptive-field是一个专门用于计算和可视化卷积神经网络(CNN)感受野的开源工具。该工具支持2D和3D CNN,能生成直观的感受野2D动画图。它易于集成到PyTorch项目中,可计算整个网络或特定层的感受野大小。这对于分析和优化CNN架构提供了重要参考。

reptile-pytorch - PyTorch实现的用于监督学习的OpenAI Reptile算法
GithubMiniImagenetOmniglotOpenAIPyTorchReptile开源项目
PyTorch实现的OpenAI Reptile算法,专注于监督学习,目前支持在Omniglot数据集上运行,具备K-shot N-way采样、训练监控和中断恢复功能。欢迎对项目的贡献和反馈,未来计划支持Mini-Imagenet数据集、提升Meta-batch大小、添加训练曲线和Shell脚本下载功能。
pytorch-frame - 模块化深度学习框架用于异构表格数据
GithubPyTorch Frame开源项目模块化框架深度学习神经网络表格数据
PyTorch Frame是一个为异构表格数据设计的深度学习框架,支持数值、分类、时间、文本和图像等多种列类型。它采用模块化架构,实现了先进的深度表格模型,并可与大型语言模型集成。该框架提供了便捷的mini-batch加载器、基准数据集和自定义数据接口,简化了表格数据的深度学习研究过程,适用于各层次研究人员。框架内置多个预实现的深度表格模型,如Trompt、FTTransformer和TabNet等,并提供与XGBoost等GBDT模型的性能对比基准。PyTorch Frame无缝集成于PyTorch生态系统,便于与其他PyTorch库协同使用,为端到端的深度学习研究提供了便利。
llm-transparency-tool - 深入分析Transformer语言模型的交互式可视化工具
GithubLLM Transparency Tool可视化分析开源项目神经网络语言模型贡献图
LLM Transparency Tool是一个用于分析Transformer语言模型的交互式工具。该工具支持选择模型和提示、运行推理,并通过贡献图可视化模型内部机制。它能够展示token表示、注意力头和前馈网络块的详细信息,有助于理解模型的决策过程。这个工具兼容多种模型,并提供Docker部署选项,是研究人员和开发者分析语言模型的实用资源。
3D-ResNets-PyTorch - 用于动作识别的 3D ResNets
3D ResNetsAction RecognitionGithubPyTorchSpatiotemporal 3D CNNs开源项目预训练模型
该项目提供基于PyTorch的3D ResNet代码,适用于动作识别,支持Kinetics和Moments in Time等数据集。项目包含训练、微调和测试脚本,并提供预训练模型,支持最新的PyTorch版本和分布式训练。用户可使用详细脚本进行数据准备和模型评估,适合研究与应用。
pytorch-lr-finder - PyTorch学习率范围测试工具
GithubPyTorch优化器学习率开源项目深度学习神经网络
pytorch-lr-finder是一个基于PyTorch的学习率范围测试工具,实现了Leslie N. Smith论文中的方法和fastai的改进版本。通过在预训练阶段调整学习率,帮助用户确定最佳学习率。工具支持梯度累积和混合精度训练,适用于多种深度学习任务。简洁的API和可视化功能便于优化神经网络训练过程。
efficientdet - EfficientDet目标检测模型的PyTorch实现
COCO数据集EfficientDetGithub开源项目深度学习目标检测计算机视觉
本项目提供了EfficientDet目标检测模型的PyTorch实现。支持COCO数据集的训练、评估和测试,在COCO val2017上达到0.314 mAP。包含预训练权重、视频测试功能和使用说明。适合研究人员和开发者参考使用。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
EchoTorch - 高效回声状态网络研究工具库
EchoTorchGithubPyTorch回声状态网络开源项目研究工具神经网络
EchoTorch是基于PyTorch的回声状态网络研究工具库,专注于实现和测试多种ESN模型。该库提供丰富的ESN组件、数据集和评估工具,支持概念器和内存管理等高级功能。EchoTorch的模块化设计便于集成到深度学习架构中,为ESN研究提供灵活性。它还包含数据转换、优化算法和可视化工具,是进行ESN相关实验和研究的理想选择。
Neural-Gauge-Fields - 创新3D场景表示实现灵活UV映射与高效渲染
3D重建GithubUV映射三平面投影开源项目神经规范场视图合成
Neural-Gauge-Fields项目提出创新3D场景表示方法,通过学习UV映射和三平面投影实现灵活纹理编辑和高效渲染。项目引入InfoInv技术,提升基于网格和MLP的神经场性能。这一方法为3D视图合成、场景编辑和表面重建提供新工具,在计算机图形学和视觉领域展示应用前景。
CV - 深度学习视频教程及笔记资源
GithubJupyter NotebookPytorch开源项目数据集深度学习视频讲解
本项目提供深度学习视频讲解及笔记资源,涵盖Pytorch、李沐、吴恩达等名师课程,并附有详细的数据集和实用工具。适合从事AI算法开发、图像处理及语音识别方向的求职者,并提供多家知名企业的内推机会,帮助自学者搭建交流平台,实现技术突破和职业发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号