Project Icon

NeuralNetworkRacing

基于神经网络的2D自动驾驶模拟器

NeuralNetworkRacing是一个使用Python开发的2D自动驾驶模拟项目。它结合神经网络和进化算法,训练虚拟汽车在生成的赛道上自主行驶。项目基于pyglet和numpy库实现,包含环境模拟、赛道生成等功能。通过配置文件,用户可以调整人口数量、突变率等参数。该开源项目为AI和自动驾驶领域提供了一个实验平台。

tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
PythonRobotics - 集成多种机器人算法的Python开源项目
GithubPythonRoboticsSLAM定位导航开源项目机器人算法路径规划
PythonRobotics汇集了多种机器人算法的Python实现,包括定位、导航、SLAM和路径规划等领域的经典算法。项目代码易于理解,实用性强,依赖性低,适合学习和实践机器人算法。它提供了丰富的文档和动画演示,可作为开发机器人应用的参考资源。
GameFormer - 结合游戏理论的自动驾驶交互预测规划模型
GameFormerGithubTransformer交互预测开源项目自动驾驶规划
GameFormer是一个创新的自动驾驶AI项目,结合游戏理论和Transformer架构进行交互式预测和规划。项目提供Waymo开放运动数据集上的交互预测联合模型代码,以及动态场景的开环规划实现。GameFormer提高了预测准确性和自动驾驶系统的决策能力,为智能交通系统研究开辟新方向。
neurodiffeq - 神经网络求解微分方程的开源Python库
GithubPyTorchneurodiffeq开源项目微分方程深度学习神经网络
neurodiffeq是一个开源Python库,专门用于利用神经网络求解微分方程。它支持求解常微分方程和偏微分方程,可处理初值和边界值问题。该库提供灵活API,允许自定义神经网络结构、采样策略和监视器。neurodiffeq还支持方程束和反问题求解,能同时处理一系列参数化方程。这使其成为科学和工程领域中解决各类微分方程问题的实用工具。
rust-snake-ai-ratatui - Rust和Ratatui打造的终端贪吃蛇AI学习系统
AIGithubRust开源项目神经网络贪吃蛇游戏遗传算法
该项目展示了一个基于神经网络和遗传算法的贪吃蛇AI系统。完全使用Rust语言和Ratatui库构建,在终端运行。AI通过迭代优化策略,逐步提高游戏表现。项目提供灵活配置选项,支持自定义训练过程和可视化效果。同时包含丰富学习资源,便于理解遗传算法原理。
Neuralhub - 一体化神经网络开发与协作环境
AI工具AI研究Neuralhub协作平台深度学习神经网络
Neuralhub是面向AI爱好者、研究人员和工程师的一站式深度学习平台。它提供简化的神经网络开发环境,集成了从头构建网络的工具、丰富的预设组件库和高质量预训练模型。作为人工智能创新中心,Neuralhub不仅支持实验和技术突破,还培育了活跃的知识共享与协作社区。通过整合先进工具、前沿研究成果和海量模型资源,Neuralhub致力于让AI研究、学习和开发更加便捷高效,推动深度学习技术的普及与进步。
NeuRBF - 基于适应性径向基函数的高效神经场表示方法
GithubNeuRBF图像拟合开源项目神经场表示神经辐射场自适应径向基函数
NeuRBF是一种创新的神经场表示方法,通过适应性径向基函数实现高精度和模型紧凑性的平衡。该方法在图像拟合、SDF拟合和神经辐射场等任务中展现出优异性能,为计算机视觉和图形学研究提供了有力工具。项目提供了基于PyTorch的开源实现,并附有详细的安装和使用说明,便于研究人员复现和深入探索。
Deep-RL-Keras - 模块化实现深度强化学习算法,支持A2C、A3C、DDPG、DDQN
Actor-Critic算法GithubKeras优化算法开源项目深度Q学习深度增强学习
本项目在Keras框架下实现了多种常用的深度强化学习算法模块化,包括A2C、A3C、DDPG、DDQN等。用户可以通过命令行参数运行不同的RL算法,并在OpenAI Gym环境中进行训练。项目支持模型可视化和Tensorboard监控,提供详细的算法说明和使用案例,帮助用户理解和应用这些技术。
accel-brain-code - 深度学习和机器学习算法库集合
Github开源项目强化学习机器学习深度学习生成对抗网络自动编码器
accel-brain-code是一个开源项目,集成了多个深度学习和机器学习算法库。它包括自动编码器、生成对抗网络、深度强化学习等模块,旨在通过概念验证和研发创建原型。该项目探索了AI民主化后的机器学习研发可能性,为快速开发复杂AI系统提供了基础。其功能涵盖自动摘要、强化学习、生成对抗网络等多个领域。
PyDGN - 深度图网络研究与实验的Python开源库
GithubPyDGNPython库图分类开源项目机器学习深度图网络
PyDGN是一个面向深度图网络(DGNs)研究的开源Python库。该库提供自动化的数据处理、实验管理和并行计算功能,支持模型选择与风险评估。PyDGN简化了图学习实验流程,有助于快速原型设计和结果复现,为图神经网络研究提供了实用工具。它支持CPU和GPU并行计算,可同时评估多种模型配置。PyDGN适用于各类深度图网络研究,包括图分类、节点分类等任务。该库提供了完整的实验管理流程,从数据预处理到模型评估,有助于提高研究效率和结果可靠性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号