Project Icon

torchinfo

高级模型结构查看工具,适用于PyTorch

Torchinfo 提供了类似 TensorFlow `model.summary()` API 的功能,可视化和调试 PyTorch 模型。支持包括 RNN 和 LSTM 在内的多种层,并返回 ModelStatistics 对象。项目拥有简洁界面、多种自定义选项和详细文档,适用于 Jupyter Notebook 和 Google Colab,且经过综合单元测试和代码覆盖测试验证。

flops-counter.pytorch - 神经网络运算量与参数计算工具
Githubptflopspytorch参数计数开源项目神经网络计算复杂度
该工具用于计算神经网络中的理论乘法加法运算量,以及参数数量和逐层计算成本。工具支持两个后端:pytorch和aten。aten后端覆盖更多模型架构,而pytorch后端更适合CNN分析。通过设置verbose参数,可以获取未纳入复杂度计算的操作信息,通过ignore_modules选项则可以忽略特定模块,适用于研究用途。适用于Pytorch版本2.0及以上。
pytorch-tutorial - 为深度学习研究人员提供了学习 PyTorch 的教程代码
GithubPyTorch代码开源项目教程深度学习神经网络
突破传统学习障碍,探索PyTorch深度学习教程。通过精炼的代码,快速构建从基础到高级的模型如线性回归及神经网络等,同时详述安装指导与环境配置。
torchtitan - PyTorch原生大规模语言模型训练框架
GithubLLM训练Llama模型PyTorchtorchtitan分布式训练开源项目
torchtitan是基于PyTorch的大规模语言模型训练框架,展示了最新分布式训练功能。它采用简洁模块化设计,支持多种并行化技术,包括数据并行、张量并行和管道并行。框架还提供分布式检查点和Float8等先进特性,为Llama 3和Llama 2等模型预训练提供高效方案。torchtitan旨在展示PyTorch在大规模语言模型训练中的潜力。
segmentation_models.pytorch - 基于PyTorch的神经网络图像分割库
GithubPyTorch图像分割开源项目神经网络编码器预训练模型
segmentation_models.pytorch 是一个基于 PyTorch 的图像分割库,提供9种分割模型架构和124种编码器。该库 API 简洁,支持预训练权重,并包含常用评估指标和损失函数。它适用于研究和实际应用中的各种图像分割任务,是图像分割领域的实用工具。
pytorch-frame - 模块化深度学习框架用于异构表格数据
GithubPyTorch Frame开源项目模块化框架深度学习神经网络表格数据
PyTorch Frame是一个为异构表格数据设计的深度学习框架,支持数值、分类、时间、文本和图像等多种列类型。它采用模块化架构,实现了先进的深度表格模型,并可与大型语言模型集成。该框架提供了便捷的mini-batch加载器、基准数据集和自定义数据接口,简化了表格数据的深度学习研究过程,适用于各层次研究人员。框架内置多个预实现的深度表格模型,如Trompt、FTTransformer和TabNet等,并提供与XGBoost等GBDT模型的性能对比基准。PyTorch Frame无缝集成于PyTorch生态系统,便于与其他PyTorch库协同使用,为端到端的深度学习研究提供了便利。
tnt - PyTorch训练库,简化和优化模型训练过程
GithubPyTorchTNTtorchtnt安装开源项目训练工具
TNT 是一个用于 PyTorch 的训练库,支持 pip 和 conda 安装,并提供 master 版本更新。TNT 简化了 PyTorch 模型训练,提升开发效率。
tensorboardX - TensorBoard可视化的轻量级Python扩展库
GithubTensorBoardtensorboardX可视化开源项目机器学习深度学习
tensorboardX是一个开源的轻量级Python库,用于简化TensorBoard可视化工具的使用。它支持多种数据类型的可视化,如标量、图像和音频等。通过简单的函数调用,开发者可以轻松记录实验数据。该库兼容PyTorch等多种深度学习框架,方便跟踪和分析机器学习实验。此外,tensorboardX还能与Comet平台集成,提供额外的实验管理功能。它具有良好的版本兼容性,为不同环境下的机器学习项目提供了灵活的可视化解决方案。
pytorch-lightning - 深度学习框架的全方位AI模型训练与部署解决方案
AI模型训练GithubLightning FabricPyTorch Lightning开源项目模型部署深度学习热门
深度学习框架Pytorch-Lightning 2.0版本现已推出,提供清晰稳定的API,支持AI模型的预训练、微调和部署。该框架轻松实现Pytorch代码组织,将科学研究与工程实现分离,帮助研究人员和工程师高效进行模型训练与部署。通过提供各种训练和部署选项以及兼容多种硬件和加速器,Pytorch-Lightning兼顾模型的灵活性和可扩展性,适应从初学者到专业AI研究的不同需求。
onnx2torch - ONNX模型转换至PyTorch的转换器
GithubONNXPyTorchonnx2torch安装开源项目转换器
onnx2torch转换器使从ONNX到PyTorch的模型转换变得简单,从而简化深度学习工作流。通过简单函数调用即可完成转换,并支持自定义层扩展,且支持模型返回ONNX格式。适用于分割、检测、分类和变压器模型。尽管当前支持的模型和操作有限,用户可以通过GitHub反馈需求,以协助开发团队改进。支持通过pip或conda快速安装,并提供详细的使用示例和扩展教程。
pytorch-doc-zh - PyTorch深度学习库中文文档与教程,支持GPU和CPU优化
GPUGithubPyTorchtensor库中文文档开源项目深度学习
提供最新的PyTorch中文文档与教程,涵盖深度学习和张量优化,支持GPU和CPU。包括2.0版本中文翻译、最新英文教程和文档,以及丰富的学习资源和社区支持,适合希望深入了解和使用PyTorch的中文用户。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号