Project Icon

theseus

构建适用于机器人和视觉应用的定制非线性优化层

Theseus 是一个高效的通用库,专门用于在 PyTorch 中构建定制的非线性优化层,支持机器人和视觉问题中的端到端可微分架构。其特性包括二阶非线性优化器、线性求解器、向量化和 GPU 加速,有助于提高计算速度和内存使用效率。该库通过结合领域专用模型和神经网络模型,在保持计算梯度的同时优化 AI 模型,非常适合研究人员和开发者使用。

torchquad - 基于GPU加速的开源数值积分框架
GPUGithubPyTorchtorchquad开源项目数值积分机器学习
torchquad是一个开源的高性能数值积分框架,支持PyTorch、JAX和Tensorflow等多个后端。该框架针对GPU进行了优化,能有效处理高维积分问题,并在GPU上展现出优异的扩展性。torchquad提供多种积分方法,支持自动微分,适用于机器学习和科学计算等领域。其简洁的API设计使研究人员和开发者能够高效地完成复杂的数值积分任务。
vizier - 开源黑盒优化框架助力机器学习研究
GithubVizier分布式系统开源项目机器学习超参数调优黑盒优化
Open Source Vizier是一个Python开发的黑盒优化框架,源自Google Vizier项目。它提供用户、开发者和基准测试三大API,支持分布式多客户端环境。该框架集成了基于JAX的贝叶斯优化器,适用于超参数调优、进化算法和程序搜索等多种场景。作为开源项目,Vizier具有灵活的安装选项,可满足不同的优化研究需求。
LibMTL - 基于PyTorch的多任务学习开源库,支持多种架构和优化策略
GithubLibMTLPyTorch多任务学习开源库开源项目算法
LibMTL是一个基于PyTorch的开源库,专为多任务学习(MTL)设计。它提供了一致的代码库和评估流程,支持多种架构和优化策略,涵盖多个领域的基准数据集。LibMTL采用模块化设计,允许用户灵活添加自定义组件或调整现有算法,方便开发新策略或应用于新场景。详尽的文档确保不同经验水平的开发者都能轻松使用。
Holocron - 深度学习计算机视觉技巧的高效实现与应用
GithubHolocronPyTorch开源项目模型深度学习计算机视觉
Holocron项目提供深度学习计算机视觉最新技术的高效实现,增强开发者灵活性并与PyTorch生态系统兼容。支持多种图像分类、目标检测和语义分割模型,包括Res2Net、Darknet和YOLO等。项目附带详细文档、示例代码和实时演示,助力开发者快速上手并部署高性能视觉解决方案,并提供多种优化算法和工具提升训练效率与准确性。适用于追求前沿性能和灵活开发环境的研究人员和工程师。
EasyCV - 基于PyTorch的全能计算机视觉工具箱,支持自监督学习和Transformer模型
EasyCVGithubPyTorch图像分类开源项目目标检测自监督学习
EasyCV是基于PyTorch的全能计算机视觉工具箱,专注于自监督学习、Transformer模型和主要视觉任务,包括图像分类、度量学习、目标检测和姿态估计。该工具箱提供了最先进的自监督算法如SimCLR、MoCO V2、Swav、DINO和基于掩码图像建模的MAE。它拥有简单综合的推理接口,并支持多种预训练模型。EasyCV支持多GPU和多工作者训练,利用DALI优化数据处理,使用TorchAccelerator和fp16加速训练,并通过PAI-Blade优化推理性能。
DeepSpeed - 一个深度学习优化库,专为大规模模型训练和推理设计
DeepSpeedGithub分布式训练大规模模型训练开源项目模型压缩模型推理
DeepSpeed 是一个深度学习优化软件套件,专为大规模模型训练和推理设计,能显著优化系统性能和降低成本。它支持亿级至万亿级参数的高效管理,兼容各种计算环境,从资源受限的GPU系统到庞大的GPU集群。此外,DeepSpeed 在模型压缩和推理领域亦取得创新成就,提供极低的延迟和极高的处理速率。
tutel - Tutel:现代动态训练和推理的优化混合专家实现
CUDAGithubMoEPytorchROCmTutel开源项目
Tutel MoE是一种优化的专家混合实现,支持Pytorch、CUDA、ROCm和CPU等多种框架和硬件。它加速了动态训练和推理,并提供了多项功能更新,例如tensorcore选项、自定义专家扩展和NCCL超时设置。Tutel支持灵活配置和转换工具,适用于多节点和多GPU分布式模式。用户可以轻松集成和测试Tutel,并通过详尽的示例和文档获得技术支持。
optimum-quanto - PyTorch模型量化框架 提升性能和效率
GithubOptimum QuantoPyTorch开源项目机器学习模型优化量化
Optimum Quanto是专为Optimum设计的PyTorch量化框架。它支持eager模式、多设备部署,自动插入量化/反量化存根和操作,实现从浮点到动态/静态量化模型的无缝转换。支持多种精度的权重和激活量化,有效提升模型性能和内存效率。该框架为Hugging Face和原生PyTorch模型提供简便的量化流程。
benchmark_VAE - 统一实现常见变分自编码器并提供基准比较
Githubpythae分布式训练变分自编码器开源项目深度学习自动编码器
pythae库实现多种常见的变分自编码器模型,提供相同自编码神经网络架构下的基准实验和比较。用户可以用自己的数据和编码器、解码器网络训练这些模型,并集成wandb、mlflow和comet-ml等实验监控工具。最新版本支持PyTorch DDP分布式训练,提高训练速度和处理大数据集的能力。支持从HuggingFace Hub进行模型共享和加载,代码简洁高效。涵盖多种已实现模型和采样器,满足不同研究需求。
zeta - 通过模块化组件提升AI模型开发速度
GithubZeta人工智能模型开源项目模块化神经网络高性能
Zeta项目提供模块化、高性能和可扩展的构建块,使AI模型开发速度提高80%。该项目的功能模块包括Flash Attention、SwiGLU激活函数和RelativePositionBias,这些组件大幅提升了模型的效率和性能。Zeta专注于可用性、模块化和性能,已被广泛应用于数百个模型中。用户可以通过简单的安装步骤,快速开始模型的原型设计、训练和优化。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号