Project Icon

video-diffusion-pytorch

开源项目实现文本到视频生成新突破

video-diffusion-pytorch项目实现了基于扩散模型的文本到视频生成技术。该开源项目采用时空分解U-net结构,将2D图像生成扩展至3D视频领域。支持文本条件生成、BERT编码和批量训练等功能。目前在移动MNIST数据集上表现良好,为研究人员和开发者提供了探索视频生成新前沿的工具。该技术有望在复杂视频生成任务中取得进展。

stable-video-diffusion-img2vid-xt - 图像到视频转换模型Stable Video Diffusion实现动画生成
GithubHuggingfaceStable Video Diffusion人工智能图像到视频生成开源项目模型深度学习计算机视觉
Stable Video Diffusion Image-to-Video是Stability AI开发的扩散模型,可将静态图像转换为短视频。该模型生成25帧、576x1024分辨率的视频片段,视频质量优于同类产品。适用于艺术创作、教育工具等场景,支持商业和非商业用途。模型存在视频较短、不支持文本控制等局限性。开发者可通过GitHub上的开源代码使用该模型。
stable-video-diffusion-img2vid - AI模型将静态图像转换为动态短视频的创新技术
GithubHuggingfaceStable Video Diffusion人工智能图像到视频生成开源项目模型深度学习计算机视觉
Stable Video Diffusion Image-to-Video是一种先进的AI模型,可将静态图像转化为短视频。该模型利用潜在扩散技术,生成14帧、576x1024分辨率的视频片段。在视频质量方面表现出色,主要应用于生成模型研究和安全部署等领域。尽管存在视频时长短、可能缺乏动作等限制,但该模型为图像到视频转换技术带来了新的可能性。目前仅限于研究用途,不适用于生成事实性或真实性内容。
FIFO-Diffusion_public - 文本驱动的无限长度视频生成技术
AI视频生成FIFO-DiffusionGithub开源项目文本生成视频无限长视频
FIFO-Diffusion是一种创新的文本到视频生成技术,无需额外训练即可从文本描述生成无限长度的高质量视频。该项目具有低内存需求(不到10GB VRAM)、支持多GPU并行推理等特点,并可与VideoCrafter2和Open-Sora Plan等先进模型兼容。FIFO-Diffusion为研究人员和开发者提供了探索和创造长时间、连贯视频内容的有力工具。
Awesome-Video-Diffusion - 人工智能视频生成与编辑技术资源大全
AI视频Github开源项目扩散模型文本到视频视频生成视频编辑
本文汇集了视频生成、编辑、修复和理解领域的最新扩散模型研究。内容包括开源工具箱、基础模型、评估基准和指标等。涵盖基础视频生成、可控生成、长视频生成、3D视频生成等多个方向,为视频AI技术研究和开发提供全面参考。
Tune-A-Video - 图像扩散模型微调实现高质量文本到视频转换
GithubTune-A-Video人工智能开源项目扩散模型文本生成视频计算机视觉
Tune-A-Video项目通过微调预训练的文本到图像扩散模型,实现高质量文本到视频生成。该方法仅需一个视频-文本对作为输入,即可快速适应新的视频生成任务。支持Stable Diffusion等多种预训练模型,能生成多样化风格的视频内容。项目开源代码实现,提供在线演示和预训练模型,为研究和开发提供便捷的文本到视频生成工具。
stable-video-diffusion-img2vid-xt-1-1 - 从图像生成视频的扩散模型的稳定性
GithubHuggingfaceStable Video Diffusion开源项目模型研究用途规定条件视频生成非商业用途
Stable Video Diffusion 1.1 是一款专为研究用途而设计的图像到视频生成模型,通过优化固定条件和运动配置,实现了更一致的视频输出。该模型可以从单张图像生成25帧、分辨率为1024x576的视频片段,但不适用于精确表现真实人物或事件,且不能通过文本进行控制。在探讨生成模型的局限性和偏见时,该模型表现出色。欲了解更多信息,请访问 Stability AI 的 GitHub 仓库。
Text-To-Video-Finetuning - 使用Diffusers微调ModelScope的文本生成视频模型,提供安装、配置和训练指南
Diffusion ModelsExponentialMLGithubLoRAModelScopeText-To-Video开源项目
Text-To-Video-Finetuning项目使用Diffusers微调ModelScope的文本生成视频模型,提供详尽的安装、配置和训练指南。主要更新包括LoRA训练、模型格式转换和Torch 2.0支持。项目现已归档,相关资源及支持文件仍可用。建议关注@damo-vilab的新实现,以体验全面的视频扩散微调功能。支持多种模型训练与推断,适用于VRAM限制设备,模块化设计方便定制与扩展。
StoryDiffusion - 实现长序列图像和视频的一致性生成
AI生成GithubStoryDiffusion一致性自注意力开源项目长序列图像生成长视频生成
StoryDiffusion是一个专注于长序列图像和视频生成的AI项目。该项目采用一致性自注意力机制,实现角色连贯的图像生成,并通过运动预测器在压缩图像语义空间中预测条件图像间的运动。StoryDiffusion不仅能生成连贯的漫画,还可创作长时间、高质量的视频,为故事创作和视觉内容生成提供了新的技术方案。
Awesome-Video-Diffusion-Models - 视频扩散模型研究进展与开源资源综述
Github开源工具箱开源项目数据集文本到视频生成视频生成模型评估指标
本文综述了视频扩散模型领域的研究进展和开源资源。内容包括最新工具箱、基础模型、数据集和评估指标,涵盖文本到视频生成、视频编辑和理解等多个方向。文章系统梳理了该领域的关键技术和资源,为研究人员和开发者提供全面参考,有助于推动视频生成和处理技术的发展。
Diffusion4D - 视频扩散模型实现快速生成时空一致4D内容
3D转4D4D生成Diffusion4DGithub大规模动态3D数据集开源项目视频扩散模型
Diffusion4D是一个基于视频扩散模型的开源项目,专注于生成时空一致的4D内容。该项目整合了大规模动态3D数据集、先进渲染技术和扩散模型,实现了图像、文本和3D模型到4D内容的转换。项目提供了数据集准备指南和渲染脚本,为计算机视觉和图形学研究提供了有价值的资源。Diffusion4D在4D内容生成领域展现了新的可能性,对相关技术发展具有推动作用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号