Project Icon

mac-ml-speed-test

Apple Silicon Mac机器学习性能测试工具

mac-ml-speed-test是一个专为Apple Silicon Mac设计的机器学习性能测试项目。通过简单脚本对比不同Mac设备上的机器学习模型速度,涵盖计算机视觉和自然语言处理等领域。项目使用PyTorch、TensorFlow等主流框架,并提供详细配置指南,便于用户进行性能评估。测试内容包括图像分类、文本分类和LLM文本生成等任务,使用CIFAR100、Food101和IMDB等数据集。此外,项目还包括与NVIDIA TITAN RTX和Google Colab免费版的性能对比,为用户提供更全面的参考数据。

chat-with-mlx - Apple Silicon Mac本地AI聊天平台 支持多种开源大语言模型
Apple SiliconGithubMLX开源模型开源项目机器学习聊天机器人
chat-with-mlx是一个基于Apple MLX框架的本地AI聊天平台,专为Apple Silicon Mac打造。该平台集成了Llama-3、Phi-3、Yi等多种开源大语言模型,注重用户数据隐私保护。项目特点包括简易安装、便捷使用,支持集成HuggingFace和MLX兼容模型。此外,平台还提供文档和YouTube视频处理功能,是一个全面的MLX语言模型聊天界面。
neural-engine - 如何利用Apple Neural Engine提升机器学习模型的性能以及其局限性的介绍
Core MLGithubNPUNeural Engine开源项目机器学习苹果
本页面全面介绍了如何利用Apple Neural Engine提升机器学习模型的性能,并指出其局限性。探讨NPU的工作原理,解答常见问题,解析部分Core ML模型为何无法充分利用ANE。还提供了具体设备支持列表和编程指南,帮助开发者优化模型,实现iPhone和iPad上的最佳计算性能。
metal-flash-attention - Apple芯片上的FlashAttention高性能实现
Apple siliconFlashAttentionGithubMetal开源项目性能优化注意力机制
metal-flash-attention项目将FlashAttention算法移植至Apple silicon,提供精简可维护的实现。支持macOS和iOS,使用32位精度计算和异步拷贝。项目采用单头注意力机制,专注于核心瓶颈优化。通过创新的反向传播设计,减少内存使用并提高计算效率。改进了原始FlashAttention的反向传播设计,提高并行效率。项目正在持续优化,包括寄存器压力、可移植性和文档完善。
slowllama - 在Apple和nVidia设备上微调Llama2和CodeLLama模型
CodeLLamaGPUGithubLlama2M1/M2设备slowllama开源项目
slowllama是一个专注于微调Llama2和CodeLLama模型的开源项目,支持70B/35B模型版本,并可在Apple M1/M2设备(如Macbook Air、Mac Mini)或消费级nVidia GPU上运行。通过将模型部分数据转储到SSD或主内存,该项目避免使用量化技巧,优化正向和反向传递性能。采用LoRA方法限制参数更新,操作步骤详尽,包括依赖安装、模型下载和配置脚本,是在资源有限环境下进行大模型微调的理想选择。
coremltools - Core ML格式模型转换和优化工具
Core MLCore ML ToolsGithubPython包开源项目机器学习模型转换
coremltools工具可以将TensorFlow、PyTorch、scikit-learn等机器学习模型转换为Core ML格式,并支持对这些模型的读写、优化和验证。这些模型可以无缝集成到Xcode项目中使用。
node-mlx - 基于MLX的高效Node.js机器学习开发工具
GPU支持GithubJavaScriptMLXnode-mlx开源项目机器学习框架
node-mlx是基于MLX的Node.js机器学习框架,支持Apple Silicon GPU加速及x64 Mac和Linux平台。该框架提供丰富的API和示例,涵盖语言模型训练和文本生成等应用。node-mlx通过简化复杂的机器学习任务,使JavaScript开发者能够更便捷地构建和部署AI模型。
llmperf - 开源工具评估大语言模型API性能
API测试GithubLLMLLMPerfRay开源项目性能评估
LLMPerf是一个评估大语言模型API性能的开源工具。它通过负载测试和正确性测试来衡量模型的响应延迟、生成吞吐量和输出准确性。该工具支持OpenAI、Anthropic、TogetherAI等主流LLM API,并可扩展适配新API。LLMPerf采用Ray框架处理并发请求,能够模拟实际负载环境。开发者和研究人员可利用LLMPerf便捷地评估和对比不同LLM API的性能表现。
coreml-examples - CoreML演示应用集合展示苹果神经引擎优化技术
CoreMLGithubiOS开发开源项目机器学习模型优化苹果神经引擎
该仓库收录了多个为苹果神经引擎优化的CoreML演示应用,展示了先进机器学习模型在iOS设备上的应用。涵盖FastViT图像分类、Depth Anything V2单目深度估计和DETR语义分割等模型。这些实例不仅展示CoreML功能,还为开发者提供在iOS设备上部署复杂机器学习模型的参考。项目采用coremltools进行优化和测试,是iOS机器学习开发的重要学习资源。
mflux - Mac专用的FLUX模型AI图像生成工具
AI绘图FLUXGithubHuggingface DiffusersMLXMacFLUX开源项目
mflux是基于Apple MLX框架的FLUX模型开源实现,为Mac设备优化的AI图像生成工具。它支持本地运行FLUX.1-Schnell模型,可生成1024x1024分辨率图像,无需云服务。项目代码简洁,专注于模型表达,适合学习和开发。未来计划支持更多FLUX模型和功能。
LLMFarm - 多功能大语言模型应用 支持iOS和macOS
GithubLLMFarmMacOS应用iOS应用人工智能大语言模型开源项目
LLMFarm是一款面向iOS和macOS的大语言模型应用,支持多种推理引擎和采样方法。该应用可加载和调整各类LLM模型参数,并提供Metal加速功能。此外,LLMFarm还具备LoRA适配器支持、模型微调和导出功能,以及上下文状态恢复和Apple快捷指令集成,为用户提供全面的大语言模型使用体验。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号