Project Icon

Segment-and-Track-Anything

视频中任意对象的自动分割与追踪系统

Segment-and-Track-Anything是一个专注于视频中任意对象分割和追踪的开源项目。该系统集成了SAM模型的关键帧分割能力和DeAOT模型的多目标追踪功能。它支持自动检测新对象、交互式修改、文本提示等多种操作模式,适用于街景分析、增强现实、细胞追踪等领域。项目提供了直观的WebUI界面和灵活的参数设置,使用户能够轻松实现复杂的视频对象分割和追踪任务。

Awesome-Anything - 通用AI方法的精选资源库
GithubSegment Anything人工智能图像分割开源项目目标检测计算机视觉
Awesome-Anything是一个精选的通用人工智能资源库,涵盖对象分割、图像生成、3D处理、模型优化和多任务学习等领域。该项目汇集了各种创新技术和工具,为AI研究和开发提供全面支持,助力人工智能技术的进步。
segment-anything-fast - 高性能图像分割模型加速框架
AI模型加速GithubPyTorchSegment Anything图像分割开源项目推理优化
segment-anything-fast是基于Facebook's segment-anything的优化版本,专注于提高图像分割模型的性能。通过整合bfloat16、torch.compile和自定义Triton内核等技术,该项目显著提升了模型推理速度。它支持多种优化方法,如动态int8对称量化和2:4稀疏格式,同时保持了简单的安装和使用流程。这使得开发者能够轻松替换原始segment-anything,实现更高效的图像分割。该优化框架适用于需要实时或大规模图像分割处理的应用,如自动驾驶、医疗影像分析或视频编辑等领域,可显著提高处理效率和资源利用率。
Grounded-SAM-2 - 多模态视频目标检测与分割框架
GithubGrounding DINOSAM 2图像分割开源项目目标检测视频追踪
Grounded-SAM-2是一个开源项目,结合Grounding DINO和SAM 2技术,实现图像和视频中的目标检测、分割和跟踪。该项目支持自定义视频输入和多种提示类型,适用于广泛的视觉任务。通过简化代码实现和提供详细文档,Grounded-SAM-2提高了易用性。项目展示了开放世界模型在处理复杂视觉任务中的潜力,为研究人员和开发者提供了强大的工具。
lang-segment-anything - 基于文本提示的开源图像分割工具
GithubLanguage Segment-Anything图像分割对象检测开源项目深度学习计算机视觉
Lang-segment-anything是一个开源项目,结合实例分割和文本提示功能,用于生成图像中特定对象的掩码。该工具基于Meta的segment-anything模型和GroundingDINO检测模型,实现了零样本文本到边界框的对象检测。项目支持自定义文本提示进行精确对象分割,并可在Lightning AI应用平台上部署。这一工具为图像分析和对象识别提供了新的解决方案。
panoptic-segment-anything - 零样本全景分割融合SAM、Grounding DINO和CLIPSeg的创新方法
CLIPSegGithubGrounding DINOSAM实例分割开源项目零样本全景分割
panoptic-segment-anything项目提出了一种创新的零样本全景分割方法。该方法巧妙结合Segment Anything Model (SAM)、Grounding DINO和CLIPSeg三个模型,克服了SAM在文本感知和语义分割方面的局限性。项目提供Colab notebook和Hugging Face Spaces上的Gradio演示,方便用户体验这一pipeline。此外,预测结果可上传至Segments.ai进行微调,为计算机视觉研究开辟了新的可能性。
multi-object-tracker - 利用Python实现多对象跟踪,兼容多种检测器
CentroidTrackerGithubOpenCVTF-MobileNetSSDYOLOv3multi-object tracker开源项目
该项目提供多种基于Python的多对象跟踪算法,包括CentroidTracker、IOUTracker、CentroidKF_Tracker和SORT,支持TF_SSDMobileNetV2、Caffe_SSDMobileNet和YOLOv3等OpenCV对象检测器。安装简便,使用友好,支持GPU加速,适用于视频数据解析和对象追踪。参考项目示例可快速上手,实现精准多对象跟踪。
SparseTrack - 多目标跟踪新方法:基于伪深度的场景分解技术
GithubSparseTrack伪深度场景分解多目标跟踪开源项目数据关联
SparseTrack提出了一种新的多目标跟踪方法,通过伪深度估计和深度级联匹配策略来分解密集场景。这种方法在MOT17和MOT20基准测试中表现出色,仅使用IoU匹配就达到了与复杂算法相当的性能。SparseTrack为解决拥挤场景中的多目标跟踪问题提供了新的思路,展示了简单方法在复杂任务中的潜力。
evf-sam2 - EVF-SAM优化文本引导的Segment Anything Model性能
EVF-SAMGithubHuggingface图像分割开源项目模型深度学习视觉语言融合计算机视觉
EVF-SAM项目利用早期视觉语言融合技术,提高了文本引导的Segment Anything Model性能。该开源项目为图像和视频分割任务提供解决方案,支持文本提示输入。用户可在GitHub获取源代码,通过inference.py和inference_video.py文件了解使用方法。目前需从源代码导入模型脚本,尚不支持AutoModel.from_pretrained(...)功能。
FastSAM - 全景分割模型 速度提升50倍且性能可比SAM
AI模型Fast Segment AnythingGithub图像分割开源项目深度学习计算机视觉
FastSAM是一款基于CNN的高效全景分割模型。仅使用SAM数据集2%的数据,就实现了与SAM相当的性能,同时运行速度提升50倍。支持一切模式、文本提示、框选和点选等多种交互方式。在边缘检测、目标检测等下游任务中,FastSAM展现出优异的零样本迁移能力,为计算机视觉研究开辟新方向。
sam-vit-huge - SAM 革新性的通用图像分割模型
AI模型GithubHuggingfaceSAM图像分割开源项目模型深度学习计算机视觉
Segment Anything Model (SAM) 是Facebook Research开发的先进图像分割模型。它能根据点或框等简单提示生成精确的对象蒙版,在1100万图像和11亿蒙版的大规模数据集上训练。SAM具备强大的零样本迁移能力,可应用于多种分割任务。模型由视觉编码器、提示编码器和蒙版解码器构成,既可生成单个目标蒙版,也能自动分割整图所有对象。SAM为计算机视觉领域带来了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号