Project Icon

Segment-and-Track-Anything

视频中任意对象的自动分割与追踪系统

Segment-and-Track-Anything是一个专注于视频中任意对象分割和追踪的开源项目。该系统集成了SAM模型的关键帧分割能力和DeAOT模型的多目标追踪功能。它支持自动检测新对象、交互式修改、文本提示等多种操作模式,适用于街景分析、增强现实、细胞追踪等领域。项目提供了直观的WebUI界面和灵活的参数设置,使用户能够轻松实现复杂的视频对象分割和追踪任务。

Transformer_Tracking - 视觉追踪中Transformer应用的全面综述和前沿动态
GithubTransformer开源项目深度学习目标检测视觉跟踪计算机视觉
本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。
XMem2 - 少量标注实现高精度视频分割的开源工具
GithubXMem++交互式标注人工智能开源项目视频分割计算机视觉
XMem2是一个开源的交互式视频分割工具,通过永久记忆模块和创新帧选择算法,只需少量标注即可实现高质量分割。它能以30+ FPS的速度处理物体部件、流体、可变形物体等复杂场景。XMem2提供改进的GUI和Python接口,适用于电影制作等领域。项目还包含PUMaVOS数据集,涵盖23个具挑战性的视频分割场景。
Segment-Any-Anomaly - 基于混合提示正则化的零样本异常分割方法
GithubSAA+图像处理开源项目异常分割计算机视觉零样本学习
Segment-Any-Anomaly项目提出了一种基于混合提示正则化的零样本异常分割方法。该方法通过适配Grounding DINO和Segment Anything等基础模型,实现了对多种异常检测数据集的高效分割。项目在MVTec-AD、VisA等公开数据集上展现出优秀性能,并在VAND工作坊竞赛中取得佳绩。仓库包含完整代码实现、演示和使用说明,便于研究者复现和应用。
micro-sam - 显微镜图像交互式分割与追踪工具
GithubSegment Anythingnapari应用交互式分割开源项目微观图像分割模型微调
micro-sam是一款专为显微镜图像分析设计的开源工具,基于Segment Anything模型。它支持2D和3D图像的交互式分割以及2D图像序列的追踪。作为napari插件,micro-sam允许用户通过简单点击实现复杂分割任务。该工具还提供模型微调和大规模图像处理功能,为显微镜数据分析提供了高效灵活的解决方案。
tokenize-anything - 基于视觉提示的多功能区域分割识别和描述模型
AI分割识别GithubTAP多任务处理开源项目灵活提示视觉语言模型
Tokenize Anything via Prompting是一个多功能视觉模型,可通过点、框和草图等视觉提示对图像中的任意区域进行分割、识别和描述。该模型利用SA-1B数据集和预训练的EVA-CLIP模型进行训练,具备强大的语义理解能力。其模块化设计支持多样化的视觉语言任务,可自定义预测器和异步处理流程,适用于各种应用场景。
segment-lidar - 基于SAM的航空LiDAR数据无监督分割Python工具包
GithubLiDARSAM分割开源项目点云自动化
segment-lidar是一个用于航空LiDAR数据无监督实例分割的Python工具包。它集成了Meta AI的Segment-Anything Model (SAM)和segment-geospatial包,实现3D点云数据的自动化分割。工具包具备地面滤波、自定义相机视图和交互式可视化等功能,安装简便,文档完善。适合处理大规模LiDAR数据的研究和开发需求。
SAM-Adapter-PyTorch - 提升复杂场景下图像分割效果的开源项目
GithubICCVPyTorchPythonSAM-AdapterSegment Anything开源项目
SAM-Adapter项目提升了SAM在伪装、阴影和医疗图像分割中的表现。最新的更新支持更强大的SAM2骨干网络,并提供多种预训练模型和数据集下载链接,便于快速上手。该项目在IEEE/CVF国际计算机视觉会议上展示,并包含详细的环境配置和训练指南,方便研究人员进行深度学习任务。
SportsLabKit - 专业体育分析工具包 实现比赛视频数据化
GithubSportsLabKit体育分析开源项目数据处理目标跟踪计算机视觉
SportsLabKit是一个开源的体育分析工具包,可将比赛视频转换为可分析的数据。目前主要用于足球领域,计划扩展到其他运动。核心功能包括高性能追踪、灵活架构、2D场地校准和数据封装,便于进行运动员追踪和数据分析。该项目集成了SORT、DeepSORT、ByteTrack等多种追踪算法,支持YOLOv8等检测模型,为研究人员和开发者提供了灵活的开发环境。SportsLabKit正在持续开发中,旨在提供更多计算机视觉工具和统一的数据表示方法。
DLTA-AI - AI赋能的数据标注、追踪和注释工具
DLTA-AIGithub分割模型开源项目数据标注机器学习目标跟踪
一款集成先进计算机视觉模型的工具,简化图像数据集创建,支持零样本分割和目标跟踪,提供多种模型选择与自定义导出格式,无缝结合Labelme,提升标注效率。
Anti-UAV - 无人机目标检测与追踪开源项目
Anti-UAVGithub开源项目数据集无人机跟踪目标检测计算机视觉
Anti-UAV是一个开源项目,致力于在复杂环境中检测和追踪无人机目标。该项目提供新的数据集、评估指标和基线方法,支持RGB和红外视频输入。数据集包含多尺度无人机的高质量视频序列和密集标注。Anti-UAV旨在推动无人机检测追踪技术发展,可应用于区域安全防护等领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号