Project Icon

Pytorch-Medical-Segmentation

基于PyTorch的医学图像分割框架 支持2D和3D多模态分析

Pytorch-Medical-Segmentation是一个开源医学图像分割框架,支持2D和3D多模态分析。该项目集成多种先进算法,兼容主流医学影像格式,提供灵活配置选项。内置训练推理流程和评估指标,便于研究人员和开发者快速实现各类医学图像分割任务。

nnUNet - 自适应医学图像分割深度学习框架
GithubnnU-Net医学影像图像分割开源项目深度学习自动化
nnUNet是一个自适应深度学习框架,专注于医学图像分割。它可自动分析训练数据并优化U-Net分割流程,无需专业知识即可使用。支持2D和3D图像,处理多种模态和输入通道,并能应对不平衡类别分布。在多个生物医学图像分割挑战中表现出色,广泛用作基线方法和开发框架。适用于领域科学家和AI研究人员,为医学图像分析提供强大支持。
TransBTS - 使用Transformer实现多模态脑肿瘤医学图像分割
GithubTransBTSTransBTSV2Transformer多模态数据集开源项目脑肿瘤分割
TransBTS与TransBTSV2采用Transformer技术显著提升多模态脑肿瘤与医学图像体积分割的效率与准确性。项目包括详细的模型实现和相关文献,支持BraTS、LiTS、KiTS等医学图像数据集,并利用Python和Pytorch进行数据预处理、模型训练和测试,支持分布式训练。适用于需要高效精准医学图像分割解决方案的研究人员和工程师。
Pytorch-UNet - PyTorch实现的高效U-Net语义分割模型
CarvanaGithubPyTorchU-Net开源项目深度学习语义分割
Pytorch-UNet项目提供定制的U-Net实现,支持多类别分割任务,包括车体遮罩、肖像分割和医学图像分割。兼容PyTorch 1.13及以上版本,提供Docker镜像和预训练模型,便于集成和使用。模型在高分辨率图像上训练,取得了0.988的Dice系数,并支持自动混合精度,可通过Weights & Biases实时监控训练进度。
torchio - 深度学习医疗图像处理工具集
GithubPythonTorchIO医药图像开源项目数据增强深度学习
此工具集为深度学习医疗图像处理提供高效解决方案,涵盖读取、预处理、采样、增强和写入3D医疗图像等功能。支持多种图像转换操作,包括随机仿射变换和特定领域伪影模拟。受NiftyNet启发,该项目广泛应用于医学AI研究,提升数据处理效率和模型性能。
SAT - 突破性医学图像分割模型,支持多模态多区域文本提示
GithubSAT医学图像分割多模态开源项目文本提示通用分割模型
SAT是一个基于72个公共3D医学分割数据集构建的通用医学图像分割模型。它通过文本提示可分割MR、CT、PET三种模态和8个人体区域的497个类别。相比传统专家模型,SAT在效率和性能上都有所提升。项目开源了完整代码、预训练模型和数据集,为医学图像分析和AI研究提供了新的工具和资源。
medpy - 医学图像处理的Python库和工具集
GithubMedPyPython库医学图像处理开源软件开源项目数据分析
MedPy是一个开源的医学图像处理Python库,专注于高维图像处理。它提供丰富的功能和脚本集合,支持PyPI和Conda-Forge安装。MedPy具有完善的文档和教程,适用于Python 3及以上版本。该项目在GitHub上维护,为医学图像处理研究和应用提供了有力支持。MedPy支持医学图像的分割、配准、滤波等多种处理任务,广泛应用于放射学、神经影像学等医学领域。
Mask3D - 改进3D语义实例分割方法,兼容多种数据集
3D实例分割GithubICRA 2023Mask3DPyTorchScanNet开源项目
Mask3D是一个提升3D语义实例分割的开源项目,支持ScanNet、ScanNet200、S3DIS和STPLS3D数据集。项目集成了PyTorch、PyTorch Lightning和Hydra工具,提供高效的架构和训练流程,包括数据预处理、模型训练与测试。此外,Mask3D在多个挑战中表现优异,包括在ECCV 2022的Urban3D挑战中获得第二名。
SynthSeg - 通用深度学习脑部MRI分割工具 适用多种对比度和分辨率
SynthSeg深度学习脑部扫描分割
SynthSeg是一种深度学习脑部MRI分割工具,可处理不同对比度和分辨率的扫描。无需重新训练即可适用于各年龄段和健康状况的人群,可处理预处理或未预处理的扫描,并能应对白质病变。SynthSeg 2.0版本增加了皮层分区、自动质量控制和颅内容积估计功能,提高了其在分析大规模异质临床脑MRI数据集中的实用性。
UCTransNet - 融合U-Net与Transformer的医学图像分割网络
GithubTransformerU-NetUCTransNet医学图像分割开源项目深度学习
UCTransNet是一种结合U-Net和Transformer优势的医学图像分割网络。它通过Channel Transformer模块替代U-Net的跳跃连接,从通道维度优化特征融合。该模型在GlaS和MoNuSeg等数据集上表现优异,为医学影像分析提供新思路。项目开源代码实现和预训练模型,并提供详细使用说明,方便研究者探索和应用。
torchxrayvision - 胸部X光影像分析工具库
GithubTorchXRayVision开源项目数据集深度学习胸部X光预训练模型
TorchXRayVision是一个开源的胸部X光影像分析工具库,为多个公开数据集提供统一接口和预处理流程。它包含多种预训练模型,可用于快速分析大型数据集、实现少样本学习,以及在多个外部数据集上评估算法性能。该库旨在简化胸部X光影像研究工作流程,提高分析效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号