Project Icon

neurodiffeq

神经网络求解微分方程的开源Python库

neurodiffeq是一个开源Python库,专门用于利用神经网络求解微分方程。它支持求解常微分方程和偏微分方程,可处理初值和边界值问题。该库提供灵活API,允许自定义神经网络结构、采样策略和监视器。neurodiffeq还支持方程束和反问题求解,能同时处理一系列参数化方程。这使其成为科学和工程领域中解决各类微分方程问题的实用工具。

networkx - 全面的复杂网络分析与操作Python库
GithubNetworkXPython库图论复杂网络开源项目网络分析
NetworkX是一个功能强大的Python库,专门用于复杂网络的创建、分析和可视化。它支持多种网络类型,包括社交、生物和交通网络等。该库提供了丰富的图算法,如最短路径计算、中心性分析和社区检测,并具有excellent的可扩展性。NetworkX广泛应用于学术研究和工业领域,支持高效的大规模网络处理和数据挖掘。
d3rlpy - 支持离线和在线深度强化学习的实用算法库
Githubd3rlpy安装开源项目强化学习离线RL算法
d3rlpy是一个为实践者和研究人员打造的深度强化学习库,支持离线和在线强化学习算法。无需掌握深度学习库,即可通过其直观的API使用多种先进算法。d3rlpy提供丰富的文档和教程,首创支持分布式Q函数,适用于机器人和医疗等复杂场景。兼容Linux、macOS和Windows,多种安装方式可供选择,欢迎试用和贡献代码。
deephyper - 自动化机器学习任务的开源优化框架
DeepHyperGithub开源项目机器学习自动化深度集成神经架构搜索超参数优化
DeepHyper是一个专注于自动化机器学习任务的Python开源框架。它提供了超参数优化、神经网络架构搜索和深度集成不确定性量化等功能。支持单机和分布式环境,适用于多种场景。DeepHyper简化了机器学习工作流程,为研究人员和开发者提供了强大的工具。项目包含详细文档、快速入门指南和活跃的社区支持,方便用户快速上手和深入使用。
swift-coreml-diffusers - Swift应用中集成Core ML实现Stable Diffusion模型
Core MLGithubStable DiffusionSwiftiOSmacOS开源项目
swift-coreml-diffusers项目展示如何在Swift应用中集成Apple的Core ML Stable Diffusion实现。该应用支持macOS和iOS设备,采用DPM-Solver++调度器提高性能。首次启动时自动下载量化Core ML模型,可利用CPU、GPU和Neural Engine加速。项目适合快速迭代开发,也可作为在Apple设备上实现AI图像生成的示例代码。
Daily-DeepLearning - 全面计算机基础、Python应用、数据科学及机器学习指南
GithubPython开源项目操作系统数据结构机器学习深度学习
提供丰富的计算机科学教育资源,涵盖数据结构、操作系统、计算机网络等基础课程。Python和数据科学部分包括numpy、pandas、matplotlib等流行库的使用教程。机器学习和深度学习部分涉及逻辑回归、集成学习、RNN、CNN等理论及实践内容,适合初学者及进阶学习者掌握计算机科学与人工智能技术。
deepsleepnet - 自动睡眠阶段评分深度学习模型
DeepSleepNetEEGGithub开源项目深度学习睡眠阶段评分神经系统工程
DeepSleepNet是一个创新的深度学习模型,用于基于原始单通道脑电图(EEG)数据的自动睡眠阶段评分。其独特的双阶段架构融合了表示学习和序列残差学习技术,大幅提升了评分准确性。通过在MASS和Sleep-EDF等公开数据集上的严格评估,DeepSleepNet展现出优于传统手工特征工程方法的卓越性能。这一高效、精确的自动化工具为睡眠障碍诊断、睡眠质量监测等睡眠研究和临床应用领域带来了新的可能。
DeepLearning - 深度学习资源,涵盖教程、图书和实战项目
Github图像处理开源项目机器学习深度学习神经网络自然语言处理
探索全面的深度学习资源,涵盖教程、图书和实战项目,适合从新手到专家的每一个阶段。
Dive-into-DL-PyTorch - PyTorch实现与教程
项目将《动手学深度学习》原书的MXNet代码实现改为PyTorch,适合对深度学习感兴趣并希望使用PyTorch的用户。无需深度学习或机器学习背景,只需基础数学和编程知识。项目包含Jupyter Notebook代码和Markdown文档,通过Docsify部署,方便在线或本地浏览和运行。
Bayesian-Neural-Networks - 在PyTorch中实现的贝叶斯神经网络近似推断方法
Bayesian Neural NetworksGithubMNIST分类实验Pytorch回归实验开源项目近似推断方法
项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号