Project Icon

yolov7

实时目标检测算法实现性能新突破

YOLOv7是一款高效的实时目标检测算法,在MS COCO数据集上实现了51.4% AP的性能。该项目提供多种模型变体,包括YOLOv7-X和YOLOv7-W6等,适用于不同应用场景。此外,YOLOv7还具备姿态估计和实例分割功能,支持多GPU训练、迁移学习和模型导出,是一个全面的目标检测解决方案。

YOLOv8-multi-task - 轻量级神经网络实现实时多任务目标检测与分割
GithubYOLOv8多任务学习开源项目目标检测自动驾驶语义分割
YOLOv8-multi-task项目提出了一种轻量级神经网络模型,可同时执行目标检测、可行驶区域分割和车道线检测等多任务。该模型使用自适应拼接模块和通用分割头设计,在提高性能的同时保持高效率。实验表明,该模型在推理速度和可视化效果方面优于现有方法,适用于需要实时处理的多任务场景。
YOLO-World - 下一代实时开放词汇目标检测模型
GithubYOLO-World开放词汇开源项目目标检测零样本学习预训练模型
YOLO-World是一款创新的实时开放词汇目标检测模型。经过大规模数据集预训练,它展现出卓越的开放词汇检测和定位能力。采用'先提示后检测'范式,YOLO-World通过重参数化技术实现高效的自定义词汇推理。该模型支持零样本目标检测、分割等多种任务,并开源了在线演示、预训练权重和微调代码,为计算机视觉领域提供了实用的研究与应用工具。
TensorRT-YOLO - 为YOLO目标检测模型提供推理加速解决方案
CUDAGithubTensorRT-YOLOYOLO开源项目推理加速目标检测
此项目基于TensorRT,为YOLO目标检测模型提供推理加速解决方案,支持YOLOv3至YOLOv10及PP-YOLOE系列。集成EfficientNMS插件及CUDA技术,有效提升推理效率。支持C++和Python,包含CLI快速导出和推理功能,并提供Docker一键部署。推荐CUDA 11.6及以上版本和TensorRT 8.6及以上版本。
yolov3-tf2 - YOLOv3的TensorFlow实现,目标检测解决方案
GithubTensorFlow 2.0YoloV3开源项目检测训练预训练权重
该项目采用TensorFlow 2.0实现YOLOv3,提供预训练权重、推理示例和迁移学习功能,支持GPU加速、eager模式和图模式训练,并集成absl-py。用户可以方便地安装、训练和进行实时视频检测,同时支持TF模型导出和Serving。
ONNX-YOLOv8-Object-Detection - 将YOLOv8模型转换为ONNX格式的方法
GPUGithubONNXYOLOv8开源项目模型转换目标检测
本项目提供了一种将YOLOv8模型转换为ONNX格式的高效方法,支持在NVIDIA GPU或CPU上进行对象检测。确保输入图片尺寸与模型要求一致,以获得最佳检测精度。项目配有详细的安装指南和推理示例,包括图片、摄像头和视频推理,方便开发者快速上手并应用于实际场景。
RT-DETR - 超越YOLO的实时目标检测算法领域突破
CVPR 2024GithubRT-DETR实时目标检测开源项目深度学习物体识别
RT-DETR是一个开源的实时目标检测算法项目,在性能上超越了YOLO系列。它提供多种模型变体,从轻量级R18到大型X模型,适应不同应用需求。在COCO和Objects365数据集上,RT-DETR展现出卓越性能,最高达到56.2mAP和217FPS。项目同时支持PyTorch和PaddlePaddle框架,便于研究和应用。
awesome-object-detection - 提供涵盖R-CNN至YOLOv3等系统目标检测资源
Fast R-CNNFaster R-CNNGithubMask R-CNNR-CNNYOLO开源项目
awesome-object-detection为研究者和开发者提供涵盖R-CNN至YOLOv3等系统目标检测资源,适用于学术研究与实际应用。
YoloDotNet - 基于C#的Yolov8和Yolov10实时目标检测库
GithubYoloDotNet图像处理对象检测开源项目性能优化深度学习
YoloDotNet是基于.NET 8的C#库,支持Yolov8和Yolov10模型进行实时目标检测。该库集成ML.NET和ONNX运行时,并支持CUDA GPU加速,提供分类、目标检测、OBB检测、分割和姿态估计等功能。YoloDotNet在CPU和GPU上均可高效运行,适用于各种计算机视觉应用场景。
yolov9-face-detection - YOLOv9在WIDER Face数据集上的人脸检测实现
GithubWIDER Face数据集YOLOv9人脸检测开源项目深度学习计算机视觉
这个开源项目展示了如何利用YOLOv9模型在WIDER Face数据集上实现高精度人脸检测。项目提供了完整的工作流程,包括安装指南、预训练模型、数据准备、训练和推理方法。同时还包含数据集转换脚本和配置文件,方便研究者和开发者快速上手并应用于实际场景。
edgeyolo - 优化边缘设备性能的模型,支持ONNX和TensorRT导出
COCO2017EdgeYOLOGithubHuawei AscendNvidia Jetson AGX XavierTensorRT开源项目
EdgeYOLO为边缘设备优化,在Nvidia Jetson AGX Xavier上达34FPS,并通过RH loss提升小型和中型物体检测。支持COCO2017和VisDrone2019数据集,提供多种模型格式和部署代码,包括RKNN、MNN和TensorRT。项目定期更新,并集成了SAMLabeler Pro工具,支持多人远程标注。可快速上手和训练,适配不同设备和应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号