Project Icon

how-to-read-pytorch

通俗易懂的PyTorch核心概念教程 从张量运算到数据加载的全面指南

该项目是一个PyTorch核心概念教程系列,包含5个Jupyter notebook。教程内容涵盖张量运算、自动求导、优化器、网络模块和数据加载等PyTorch关键主题。每个主题提供详细说明和可运行示例代码,旨在帮助开发者理解PyTorch的运行模型和高效GPU编程。所有notebook支持在Google Colab上免费运行,便于实践学习。

Transformer-from-scratch - 简洁实现Transformer模型的入门教程
GithubLLMPyTorchTransformer开源项目模型训练自然语言处理
该项目展示了如何用约240行代码实现Transformer模型,包含基于PyTorch的训练演示和详细的Jupyter Notebook。使用450Kb样本数据集,在单CPU上20分钟内完成训练,帮助初学者理解大型语言模型的原理和实现过程。
Tensor-Puzzles - 21个张量编程挑战助力深入理解PyTorch和NumPy
GithubNumPyPyTorch广播开源项目张量编程张量运算
Tensor-Puzzles项目包含21个张量编程挑战,旨在加深对PyTorch和NumPy等张量编程语言的理解。这些精心设计的题目引导学习者利用广播等技巧,从基本原理实现复杂张量操作,减少对标准库的依赖。项目注重实践和创新,有助于全面提升张量编程能力。
EffectiveTensorflow - TensorFlow 2的深入讲解,包括基本概念、广播机制、符号计算和控制流操作等
GithubTensorFlow 2开源项目张量梯度下降神经网络自动微分
本指南深入讲解 TensorFlow 2,包括基本概念、广播机制、符号计算和控制流操作等。探讨如何通过重载操作符和控制流来提升代码效率,与 NumPy 的兼容性增强了代码的可读性。同时,介绍了广播机制的优势与潜在缺点,并展示了如何在多设备上使用 TensorFlow 2 的新 API 高效地处理和优化大型神经网络。
Deep-Learning-Projects - Jupyter notebook深度学习项目集合与实践指南
GitHubGithubJupyter Notebook开源项目教程深度学习项目
Deep-Learning-Projects是一个包含多个深度学习小项目的GitHub仓库,以Jupyter notebook形式呈现。仓库提供详细的项目说明和配套视频教程,涵盖多个深度学习领域。这些资源为不同水平的学习者和开发者提供了实践机会,有助于从理论到实践的学习过程。
Daily-DeepLearning - 全面计算机基础、Python应用、数据科学及机器学习指南
GithubPython开源项目操作系统数据结构机器学习深度学习
提供丰富的计算机科学教育资源,涵盖数据结构、操作系统、计算机网络等基础课程。Python和数据科学部分包括numpy、pandas、matplotlib等流行库的使用教程。机器学习和深度学习部分涉及逻辑回归、集成学习、RNN、CNN等理论及实践内容,适合初学者及进阶学习者掌握计算机科学与人工智能技术。
fastbook - fastai与PyTorch的深度学习教程
GithubGoogle ColabMOOCPyTorchfastai开源项目深度学习
本项目提供涵盖fastai和PyTorch的深度学习教程,适合初学者与进阶用户。可通过Google Colab在线运行,无需本地配置Python环境。项目还包括MOOC课程及相关书籍,系统化帮助用户学习深度学习技术。
Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials - 最新的机器学习、深度学习和人工智能教程集锦
AI应用GithubPyTorchTensorFlow开源项目机器学习深度学习
该项目提供了涵盖机器学习、深度学习和人工智能的最新教程,强调在GPU编程、数据中心人工智能以及与Web3相关的可持续人工智能等领域的最新动向。集成了PyTorch、TensorFlow等工具和库的实战案例,助力用户精通深度学习技术,同时展示技术在交通、医疗等领域的应用前景。
hands-on-ml-zh - Sklearn和TensorFlow机器学习指南
GithubPythonSklearnTensorFlow开源项目数据分析机器学习
本指南详细介绍了如何使用Sklearn和TensorFlow进行机器学习,包括在线阅读、Docker镜像、PYPI包和NPM包的多种下载方式,并提供了完整的编译和安装步骤。通过该指南,读者能够学习和掌握数据分析及机器学习的实用技能。
transformers-tutorials - Transformers模型在自然语言处理中的应用教程
BERTGithubHugging FaceNLPPyTorchTransformers开源项目
本项目提供了关于如何使用Transformers模型在自然语言处理任务中进行精细调优的详细教程,包括文本分类、情感分析、命名实体识别和摘要生成等案例。教程旨在帮助用户掌握应用最新NLP技术的技巧,并提供配套的Python代码示例和工具指南。
tutorials - 涵盖2D和3D分类、分割、回归及配准任务实例MONAI教程
2D分割3D分割GithubJupyter NotebookMONAIPyTorch开源项目
本资源库包含详尽的MONAI教程,涵盖2D和3D分类、分割、回归及配准任务实例。教程演示如何使用Matplotlib和Jupyter Notebook在PyTorch和MONAI中进行医学图像处理和深度学习操作,并提供Colab环境下的GPU加速指南及数据处理和问题解决方法。教程还介绍了模型部署、实验管理、联邦学习和数字病理学实例,帮助用户掌握和应用MONAI功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号