Project Icon

BS-RoFormer

先进音乐源分离技术的开源实现

BS-RoFormer是一个开源的音乐源分离项目,实现了先进的注意力网络技术。该项目采用跨频率和时间的轴向注意力以及旋转位置编码,显著提高了分离效果。支持立体声训练和多声部输出,为音乐处理领域带来新的可能。项目提供了详细的使用说明和应用案例,适合研究者和开发者使用。

Deej-AI - 基于人工智能的音乐推荐系统和智能DJ助手
Deej-A.I.GithubSpotify人工智能开源项目音乐嵌入音乐推荐系统
Deej-AI是一个基于人工智能的音乐推荐系统,通过分析音频特征和播放列表上下文来创建个性化播放列表。该项目结合深度学习和自然语言处理技术,实现跨流派的创意音乐推荐。系统可生成平滑过渡的播放列表,帮助发现新音乐,并支持实时推荐下一首歌曲。Deej-AI为用户提供了一种创新的智能DJ体验,适合各类音乐爱好者使用。
audio-preprocess - 开源音频处理工具集
Fish Audio PreprocessorGithubPython工具开源项目音频处理音频预处理
Fish Audio Preprocessor是一个开源音频处理工具集,提供视频/音频转wav、人声分离、自动切片和音量匹配等功能。它支持音频数据统计、重采样和转录,未来计划集成WhisperX技术。该项目在Ubuntu系统上测试通过,可通过pip安装,并提供命令行界面。适用于需要批量处理音频的开发者和研究人员。
Codec-SUPERB - 音频编解码模型性能评估基准平台
Codec-SUPERBGithub开源项目性能基准评估框架语音处理音频编解码
Codec-SUPERB是一个综合性音频编解码模型评估平台,提供标准化测试环境和统一数据集。平台特色包括直观的编解码接口、多角度评估和在线排行榜。它旨在促进语音处理领域的发展,为研究人员提供便捷的模型集成和测试环境,支持快速迭代和实验。
PaSST - Patchout技术优化音频变换器训练效率及性能
GithubPaSSTPatchout开源项目音频分类音频转换器预训练模型
PaSST项目开发的Patchout方法通过丢弃部分输入patch优化音频频谱图变换器模型训练。该技术显著降低训练时间和GPU内存消耗,同时提升模型性能。Patchout支持随机丢弃或丢弃整个时间帧、频率区间。项目提供预训练模型、推理和嵌入提取功能,以及下游任务微调框架,为音频AI研究和应用提供全面支持。
Flowformer - Flowformer 利用保护流网络实现 Transformer 线性化和长序列处理
FlowformerGithubTransformer开源项目注意力机制流网络理论线性复杂度
Flowformer 是一种 Transformer 模型,通过引入保护流网络理论,实现了线性复杂度的注意力机制。它能够处理超过4000多个标记的长序列,在视觉、自然语言处理、时间序列和强化学习等领域表现优异。在长序列建模任务中,Flowformer 的平均准确率达到56.48%,超过了 Performer 和 Reformer 等现有方法。该项目不依赖特定归纳偏置,提供了核心代码实现和多个领域的应用示例,为研究人员和开发者提供了一个通用的基础模型。
AbSViT - 创新视觉注意力模型实现自适应分析合成
AbSViTGithub图像分类开源项目视觉注意力计算机视觉语义分割
AbSViT是一个创新视觉注意力模型,采用分析合成方法实现自适应的自上而下注意力机制。该模型在ImageNet分类和语义分割任务中表现优异,尤其在鲁棒性测试中展现出色性能。AbSViT能够适应单目标和多目标场景,并根据不同问题动态调整注意力。这一模型为计算机视觉领域开辟了新的研究方向,有望在多种视觉任务中发挥重要作用。
auraloss - 专注音频的PyTorch损失函数库
GithubPyTorchSTFT开源项目损失函数深度学习音频处理
auraloss是一个专注于音频处理的PyTorch损失函数库。它提供了丰富的时域和频域损失函数,包括ESR、SNR、STFT等,以及多种感知变换功能。该库支持多分辨率和随机分辨率STFT损失等高级特性,适用于多种音频深度学习任务。auraloss设计简洁,易于使用,并提供详细文档和示例,是音频处理研究的实用工具。
vampnet - 基于音频编解码器的先进音乐生成模型
Fine-tuningGithubGradio界面VampNet开源项目生成音乐模型预训练模型
VampNet是一个开源的音乐生成项目,基于音频编解码器技术开发。该项目提供了训练音乐生成模型的方法,包括预训练模型和交互式界面。VampNet支持模型训练、微调和多GPU训练,适用于音乐创作和研究。项目文档详细介绍了环境配置、模型使用和训练过程,便于用户快速上手和探索音乐生成技术。
muzic - 一个关于 AI 音乐的研究项目
GithubMuzic人工智能开源项目深度学习音乐理解音乐生成
Muzic项目利用深度学习和人工智能技术,致力于音乐理解与生成的研究。涵盖符号音乐理解、歌词自动转录、歌曲创作、文本到音乐生成等功能,并引入AI代理实现多轨音乐生成。最新成果包括获奖的CLaMP和MuseCoco等工具,为音乐创作提供强有力的支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号